Retrovirus-like gag protein Arc/Arg3.1 is involved in extracellular-vesicle-mediated mRNA transfer between glioma cells
Activity-regulated cytoskeleton-associated (Arc) protein is predominantly expressed in excitatory glutamatergic neurons of vertebrates, where it plays a pivotal role in regulation of synaptic plasticity. Arc protein forms capsid-like particles, which can encapsulate and transfer mRNA in extracellula...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1868; no. 1; p. 130522 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Activity-regulated cytoskeleton-associated (Arc) protein is predominantly expressed in excitatory glutamatergic neurons of vertebrates, where it plays a pivotal role in regulation of synaptic plasticity. Arc protein forms capsid-like particles, which can encapsulate and transfer mRNA in extracellular vesicles (EVs) between hippocampal neurons. Once glioma cell networks actively interact with neurons via paracrine signaling and formation of neurogliomal glutamatergic synapses, we predicted the involvement of Arc in a process of EV-mediated mRNA transfer between glioma cells.
Arc expression in three human glioma cell lines was evaluated by WB and immunocytochemistry. The properties of Arc protein/mRNA-containing EVs produced by glioma cells were analyzed by RT-PCR, TEM, and WB. Flow cytometry, RT-PCR, and fluorescent microscopy were used to show the involvement of Arc in EV-mediated mRNA transfer between glioma cells.
It was found that human glioma cells can produce EVs containing Arc/Arg3.1 protein and Arc mRNA (or "Arc EVs"). Arc EVs from U87 glioma cells internalize and deliver Arc mRNA to recipient U87 cells, where it is translated into a protein. Arc overexpression significantly increases EV production, alters EV morphology, and enhances intercellular transfer of highly expressed mRNA in glioma cell culture.
These findings indicate involvement of Arc EVs into mRNA transfer between glioma cells that could contribute to tumor progression and affect synaptic plasticity in cancer patients. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0304-4165 1872-8006 |
DOI: | 10.1016/j.bbagen.2023.130522 |