On the Reynolds number dependence of velocity-gradient structure and dynamics
We seek to examine the changes in velocity-gradient structure (local streamline topology) and related dynamics as a function of Reynolds number ( $Re_{\unicode[STIX]{x1D706}}$ ). The analysis factorizes the velocity gradient ( $\unicode[STIX]{x1D608}_{ij}$ ) into the magnitude ( $A^{2}$ ) and normal...
Saved in:
Published in | Journal of fluid mechanics Vol. 861; pp. 163 - 179 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
25.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We seek to examine the changes in velocity-gradient structure (local streamline topology) and related dynamics as a function of Reynolds number (
$Re_{\unicode[STIX]{x1D706}}$
). The analysis factorizes the velocity gradient (
$\unicode[STIX]{x1D608}_{ij}$
) into the magnitude (
$A^{2}$
) and normalized-gradient tensor (
$\unicode[STIX]{x1D623}_{ij}\equiv \unicode[STIX]{x1D608}_{ij}/\sqrt{A^{2}}$
). The focus is on bounded
$\unicode[STIX]{x1D623}_{ij}$
as (i) it describes small-scale structure and local streamline topology, and (ii) its dynamics is shown to determine magnitude evolution. Using direct numerical simulation (DNS) data, the moments and probability distributions of
$\unicode[STIX]{x1D623}_{ij}$
and its scalar invariants are shown to attain
$Re_{\unicode[STIX]{x1D706}}$
independence. The critical values beyond which each feature attains
$Re_{\unicode[STIX]{x1D706}}$
independence are established. We proceed to characterize the
$Re_{\unicode[STIX]{x1D706}}$
dependence of
$\unicode[STIX]{x1D623}_{ij}$
-conditioned statistics of key non-local pressure and viscous processes. Overall, the analysis provides further insight into velocity-gradient dynamics and offers an alternative framework for investigating intermittency, multifractal behaviour and for developing closure models. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2018.924 |