On the Reynolds number dependence of velocity-gradient structure and dynamics

We seek to examine the changes in velocity-gradient structure (local streamline topology) and related dynamics as a function of Reynolds number ( $Re_{\unicode[STIX]{x1D706}}$ ). The analysis factorizes the velocity gradient ( $\unicode[STIX]{x1D608}_{ij}$ ) into the magnitude ( $A^{2}$ ) and normal...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 861; pp. 163 - 179
Main Authors Das, Rishita, Girimaji, Sharath S.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 25.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We seek to examine the changes in velocity-gradient structure (local streamline topology) and related dynamics as a function of Reynolds number ( $Re_{\unicode[STIX]{x1D706}}$ ). The analysis factorizes the velocity gradient ( $\unicode[STIX]{x1D608}_{ij}$ ) into the magnitude ( $A^{2}$ ) and normalized-gradient tensor ( $\unicode[STIX]{x1D623}_{ij}\equiv \unicode[STIX]{x1D608}_{ij}/\sqrt{A^{2}}$ ). The focus is on bounded $\unicode[STIX]{x1D623}_{ij}$ as (i) it describes small-scale structure and local streamline topology, and (ii) its dynamics is shown to determine magnitude evolution. Using direct numerical simulation (DNS) data, the moments and probability distributions of $\unicode[STIX]{x1D623}_{ij}$ and its scalar invariants are shown to attain $Re_{\unicode[STIX]{x1D706}}$ independence. The critical values beyond which each feature attains $Re_{\unicode[STIX]{x1D706}}$ independence are established. We proceed to characterize the $Re_{\unicode[STIX]{x1D706}}$ dependence of $\unicode[STIX]{x1D623}_{ij}$ -conditioned statistics of key non-local pressure and viscous processes. Overall, the analysis provides further insight into velocity-gradient dynamics and offers an alternative framework for investigating intermittency, multifractal behaviour and for developing closure models.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2018.924