Microwave Imaging for Breast Cancer Detection: Performance Assessment of a Next-Generation Transmission System
Microwave imaging has been proposed for breast cancer detection and treatment monitoring. Prototype systems based on tomography and radar-based techniques have been tested on human subjects with promising results. Previously, we developed a system that estimated average permittivity in regions of th...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 72; no. 6; pp. 1787 - 1799 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.06.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Microwave imaging has been proposed for breast cancer detection and treatment monitoring. Prototype systems based on tomography and radar-based techniques have been tested on human subjects with promising results. Previously, we developed a system that estimated average permittivity in regions of the breast using signals transmitted through the tissues. Encouraging results with volunteers and patients motivated development of a system capable of creating more detailed images of the entire breast. Objective: In this paper, we aim to assess the performance of this next generation microwave imaging system and demonstrate scans of human subjects that relate to clinical information. Methods: With a novel imaging system, scans of homogeneous phantoms and phantoms with inclusions of various sizes are collected. The accuracy, detection and localization are assessed. A pilot study is carried out with a small group of volunteers with previous mammograms. Results: Images of flexible phantoms have average error of less than 10 % in the reconstructed average permittivity. Detection of inclusions of 1 cm diameter and greater is demonstrated. The feasibility of scanning human subjects is also demonstrated by providing microwave images of several healthy volunteers with previous mammograms. Significance: A novel high-resolution microwave transmission imaging system, in conjunction with a fast quantitative reconstruction algorithm capable of detecting 1 cm diameter inclusions, is designed for breast imaging applications. It can image various breast sizes without the need for matching fluid. Conclusion: Overall, the results indicate that this imaging system is well suited for further exploration of microwave imaging with human subjects. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0018-9294 1558-2531 1558-2531 |
DOI: | 10.1109/TBME.2024.3521410 |