Taurine in adipocytes prevents insulin-mediated H2o2 generation and activates Pka and lipolysis
Among many actions assigned to taurine (Tau), the most abundant amino acid in numerous mammalian tissues, it prevents high-fat diet-induced obesity with increasing resting energy expenditure. To sustain this Tau action, the goal of the present study was to explore the acute effects of Tau on baselin...
Saved in:
Published in | Amino acids Vol. 42; no. 5; pp. 1927 - 1935 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Vienna
Springer Vienna
01.05.2012
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Among many actions assigned to taurine (Tau), the most abundant amino acid in numerous mammalian tissues, it prevents high-fat diet-induced obesity with increasing resting energy expenditure. To sustain this Tau action, the goal of the present study was to explore the acute effects of Tau on baseline and on adrenaline, insulin and their second messengers to modulate lipolysis in white adipose tissue (WAT) cells from rat epididymis. The Tau effects in this topic were compared with those recorded with Gly, Cys and Met. Tau on its own did not modify baseline lipolysis. Tau raised isoproterenol- and dibutyryl-cAMP (Bt
2
cAMP)-activated glycerol release. Gly diminished Bt
2
cAMP-activated glycerol release, and Cys and Met had no effect. Cyclic AMP-dependent activation of protein kinase A (PKA) in cell-free extracts decreased slightly by Gly and was unaltered by Cys, Met, and Tau. PKA catalytic activity in cell-free extracts was stimulated by Tau and unchanged by Cys, Gly and Met. Gly and Tau effects on PKA disappeared when these amino acids were withdrawn by gel filtration. Insulin-mediated NADPH-oxidase (NOX) raises H
2
O
2
pool, which promotes PKA subunit oxidation, and precludes its cAMP activation; thus, lipolysis is diminished. Tau, but not Cys, Gly and Met, inhibited, by as much as 70%, insulin-mediated H
2
O
2
pool increase. These data suggested that Tau raised lipolysis in adipocytes by two mechanisms: stimulating cAMP-dependent PKA catalytic activity and favoring PKA activation by cAMP as a consequence of lowering the H
2
O
2
pool. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0939-4451 1438-2199 |
DOI: | 10.1007/s00726-011-0919-x |