Preparation of Ni-Fe layered double hydroxides and its application in thermoplastic polyurethane with flame retardancy and smoke suppression
Aluminum hypophosphite (AHP), as an effective phosphorus-based flame retardant used in thermoplastic polyurethane (TPU), released a large amount of smoke and toxic gasses during combustion. In this work, a flame retardant filler, Ni-Fe layered double hydroxides (NiFe-LDHs), was synthesized and appli...
Saved in:
Published in | Polymer degradation and stability Vol. 202; p. 110043 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aluminum hypophosphite (AHP), as an effective phosphorus-based flame retardant used in thermoplastic polyurethane (TPU), released a large amount of smoke and toxic gasses during combustion. In this work, a flame retardant filler, Ni-Fe layered double hydroxides (NiFe-LDHs), was synthesized and applied in TPU together with AHP. The limiting oxygen index (LOI) of the TPU/6AHP/1NiFe-LDH composite reached 30.7% with a V-0 rating in the UL-94 test. Compared with neat TPU, the peak heat release rate (pHRR) and total heat release (THR) values of TPU/6AHP/1NiFe-LDH sample were reduced by 67.9% and 40.8%, respectively. Moreover, both the smoke production and CO/CO₂ yield were also decreased sharply. It was proposed that NiFe-LDH provided the effect of catalyzing char formation, and the obtained dense char layer was able to block both heat and smoke release. In addition, the addition of NiFe-LDH had little effect on the mechanical properties of TPU, and the tensile strength and elongation at break only decreased by 6.0% and 6.9%, respectively. This work provides a new strategy for fillers and flame retardants to improve the flame retardant properties and smoke suppression of TPU. |
---|---|
AbstractList | Aluminum hypophosphite (AHP), as an effective phosphorus-based flame retardant used in thermoplastic polyurethane (TPU), released a large amount of smoke and toxic gasses during combustion. In this work, a flame retardant filler, Ni-Fe layered double hydroxides (NiFe-LDHs), was synthesized and applied in TPU together with AHP. The limiting oxygen index (LOI) of the TPU/6AHP/1NiFe-LDH composite reached 30.7% with a V-0 rating in the UL-94 test. Compared with neat TPU, the peak heat release rate (pHRR) and total heat release (THR) values of TPU/6AHP/1NiFe-LDH sample were reduced by 67.9% and 40.8%, respectively. Moreover, both the smoke production and CO/CO₂ yield were also decreased sharply. It was proposed that NiFe-LDH provided the effect of catalyzing char formation, and the obtained dense char layer was able to block both heat and smoke release. In addition, the addition of NiFe-LDH had little effect on the mechanical properties of TPU, and the tensile strength and elongation at break only decreased by 6.0% and 6.9%, respectively. This work provides a new strategy for fillers and flame retardants to improve the flame retardant properties and smoke suppression of TPU. |
ArticleNumber | 110043 |
Author | Liu, Xuan Liu, Jian Sun, Jun Zhang, Sheng Gu, Xiaoyu Xu, Shurong Li, Hongfei |
Author_xml | – sequence: 1 givenname: Shurong surname: Xu fullname: Xu, Shurong – sequence: 2 givenname: Jian surname: Liu fullname: Liu, Jian – sequence: 3 givenname: Xuan surname: Liu fullname: Liu, Xuan – sequence: 4 givenname: Hongfei surname: Li fullname: Li, Hongfei – sequence: 5 givenname: Xiaoyu surname: Gu fullname: Gu, Xiaoyu – sequence: 6 givenname: Jun surname: Sun fullname: Sun, Jun – sequence: 7 givenname: Sheng surname: Zhang fullname: Zhang, Sheng |
BookMark | eNqNkD-P1DAQxV0c0v3hvoObk2iyeGwnmy0o0IrjkE5AAbXl2ONbL05sbEeQ78CHJntLdRXTPGn03k8z75pcTHFCQu6AbYBB9_a4STEso8WnrG2pethwxvkGgDEpLsgVAwmN2AG7JNelHNk6soUr8udrxqSzrj5ONDr62Tf3SINeMKOlNs5DQHpYbI6_vcVC9WSpr6umFLw5x_xE6wHzGFPQpXpDT6fMGetBT0h_-XqgLugR6brS2erJLM-cMsYfSMucUsZSVtJr8srpUPD2n96Q7_cfvu0fmscvHz_t3z82RjBem207bB0gaNYa13bQyra3ux0XbBCd7YaeI8geesNZJ3s-9AI5rC7HnbQ748QNeXPmphx_zliqGn0xGMJ6b5yL4lvoueyEkKt1f7aaHEvJ6JTx9fntmrUPCpg69a-O6kX_6tS_Ove_Ut69oKTsR52X_8z_Bem3m5c |
CitedBy_id | crossref_primary_10_1002_app_56352 crossref_primary_10_1016_j_conbuildmat_2024_137070 crossref_primary_10_1002_smll_202402349 crossref_primary_10_1016_j_cej_2023_146837 crossref_primary_10_1016_j_porgcoat_2023_107884 crossref_primary_10_1007_s10570_022_04929_4 crossref_primary_10_1016_j_cej_2024_156145 crossref_primary_10_1007_s10853_023_08554_9 crossref_primary_10_1016_j_polymdegradstab_2024_111120 crossref_primary_10_1016_j_scitotenv_2023_163525 crossref_primary_10_1016_j_coco_2024_102142 crossref_primary_10_1016_j_jcis_2023_08_191 crossref_primary_10_1002_pat_6149 crossref_primary_10_1016_j_polymdegradstab_2024_111029 crossref_primary_10_1007_s00289_024_05479_4 crossref_primary_10_1007_s12221_023_00445_9 crossref_primary_10_1016_j_clay_2024_107489 crossref_primary_10_1016_j_polymdegradstab_2023_110572 crossref_primary_10_1002_slct_202203411 crossref_primary_10_1016_j_polymdegradstab_2023_110350 crossref_primary_10_1016_j_cej_2024_151619 crossref_primary_10_1016_j_polymdegradstab_2022_110153 crossref_primary_10_1002_app_56087 crossref_primary_10_1021_acsaenm_2c00061 crossref_primary_10_1016_j_jaap_2023_106210 crossref_primary_10_1016_j_apmt_2024_102233 crossref_primary_10_1016_j_polymdegradstab_2022_110238 crossref_primary_10_1021_acs_iecr_2c03105 crossref_primary_10_1007_s10973_024_13547_0 crossref_primary_10_1039_D2NJ04694F crossref_primary_10_1016_j_jcis_2023_02_085 crossref_primary_10_1177_09506608241266302 crossref_primary_10_3390_polym16142044 crossref_primary_10_1016_j_chemosphere_2023_139115 crossref_primary_10_1002_app_53775 crossref_primary_10_1016_j_apt_2024_104759 crossref_primary_10_1016_j_polymdegradstab_2024_111136 crossref_primary_10_1016_j_ijbiomac_2024_129411 |
Cites_doi | 10.1016/j.compscitech.2018.06.024 10.1007/s10853-017-1354-5 10.1016/j.polymdegradstab.2019.07.006 10.1016/j.polymdegradstab.2009.07.024 10.1016/j.cej.2020.125407 10.1016/j.compositesb.2021.108886 10.1016/j.jcis.2022.04.101 10.1007/s12274-021-3317-z 10.1002/jctb.5323 10.1016/j.microc.2020.104652 10.1016/j.polymdegradstab.2020.109179 10.1007/s10570-021-04127-8 10.1002/app.46359 10.1016/j.cej.2020.125941 10.1016/j.cej.2020.127084 10.1016/j.molliq.2019.110989 10.1016/j.polymdegradstab.2021.109568 10.1016/j.polymdegradstab.2012.07.015 10.1016/j.polymdegradstab.2018.12.019 10.1016/j.polymdegradstab.2019.02.005 10.1016/j.polymdegradstab.2017.12.004 10.1039/C7QI00167C 10.1016/j.polymdegradstab.2009.04.016 10.1021/ie3031554 10.1021/acs.jpclett.9b03597 10.1007/s10570-021-04054-8 10.1002/app.50950 10.1016/j.cej.2020.125373 10.1007/s10570-020-03017-9 10.1016/j.polymdegradstab.2019.05.006 10.1016/j.jclepro.2022.130372 10.1002/pc.23964 10.1016/j.nanoen.2021.106633 10.1021/am500265a 10.1002/pat.3451 10.1021/acs.iecr.6b02708 10.1016/j.clay.2021.106054 10.1021/ie401058u 10.1016/j.carbpol.2017.03.011 10.1038/srep34004 10.1016/j.fuel.2021.121688 10.1016/j.cej.2020.127761 10.1016/j.jhazmat.2016.04.029 10.1016/j.clay.2021.106376 10.1021/acssuschemeng.0c00934 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.polymdegradstab.2022.110043 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
ExternalDocumentID | 10_1016_j_polymdegradstab_2022_110043 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AATTM AAXKI AAXUO AAYWO AAYXX ABFNM ABJNI ABMAC ABWVN ABXDB ABXRA ACDAQ ACGFS ACIWK ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADECG ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEZYN AFJKZ AFPUW AFRZQ AFTJW AFXIZ AFZHZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJSZI AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CITATION CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SDF SDG SDP SES SEW SMS SPC SPCBC SSH SSK SSM SSZ T5K WH7 WUQ XPP ~G- 7S9 L.6 |
ID | FETCH-LOGICAL-c302t-75b7f1e1a05cf5615458d99230b36d6b82e14818c206482b83e21154f2f4d9cf3 |
ISSN | 0141-3910 |
IngestDate | Fri Jul 11 06:30:13 EDT 2025 Thu Apr 24 23:05:58 EDT 2025 Tue Jul 01 02:29:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c302t-75b7f1e1a05cf5615458d99230b36d6b82e14818c206482b83e21154f2f4d9cf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2718246334 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2718246334 crossref_citationtrail_10_1016_j_polymdegradstab_2022_110043 crossref_primary_10_1016_j_polymdegradstab_2022_110043 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-00 20220801 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-00 |
PublicationDecade | 2020 |
PublicationTitle | Polymer degradation and stability |
PublicationYear | 2022 |
References | Huang (10.1016/j.polymdegradstab.2022.110043_bib0002) 2019; 165 Liu (10.1016/j.polymdegradstab.2022.110043_bib0036) 2019; 160 Jin (10.1016/j.polymdegradstab.2022.110043_bib0023) 2017; 52 Liu (10.1016/j.polymdegradstab.2022.110043_bib0003) 2017; 167 Yuan (10.1016/j.polymdegradstab.2022.110043_bib0012) 2022; 622 Li (10.1016/j.polymdegradstab.2022.110043_bib0043) 2021; 188 Huang (10.1016/j.polymdegradstab.2022.110043_bib0009) 2020; 178 Gao (10.1016/j.polymdegradstab.2022.110043_bib0045) 2019; 161 Jing (10.1016/j.polymdegradstab.2022.110043_bib0010) 2018; 165 Long (10.1016/j.polymdegradstab.2022.110043_bib0017) 2021; 404 Chen (10.1016/j.polymdegradstab.2022.110043_bib0040) 2021; 138 Zhang (10.1016/j.polymdegradstab.2022.110043_bib0024) 2018; 39 Zhai (10.1016/j.polymdegradstab.2022.110043_bib0028) 2018; 93 Li (10.1016/j.polymdegradstab.2022.110043_bib0001) 2022; 216 Liu (10.1016/j.polymdegradstab.2022.110043_bib0037) 2021; 28 Shi (10.1016/j.polymdegradstab.2022.110043_bib0016) 2020; 8 Si (10.1016/j.polymdegradstab.2022.110043_bib0021) 2020; 155 Zhang (10.1016/j.polymdegradstab.2022.110043_bib0034) 2013; 52 Xu (10.1016/j.polymdegradstab.2022.110043_bib0035) 2016; 55 Liu (10.1016/j.polymdegradstab.2022.110043_bib0044) 2021; 421 Wang (10.1016/j.polymdegradstab.2022.110043_bib0013) 2020; 149 Zhang (10.1016/j.polymdegradstab.2022.110043_bib0015) 2022; 91 Zhao (10.1016/j.polymdegradstab.2022.110043_bib0019) 2020; 397 Du (10.1016/j.polymdegradstab.2022.110043_bib0025) 2009; 94 Meng (10.1016/j.polymdegradstab.2022.110043_bib0038) 2021; 219 Chen (10.1016/j.polymdegradstab.2022.110043_bib0008) 2020; 400 Yue (10.1016/j.polymdegradstab.2022.110043_bib0033) 2020; 11 Zhou (10.1016/j.polymdegradstab.2022.110043_bib0039) 2015; 26 Zhang (10.1016/j.polymdegradstab.2022.110043_bib0026) 2018; 147 Liu (10.1016/j.polymdegradstab.2022.110043_bib0046) 2021; 28 Liu (10.1016/j.polymdegradstab.2022.110043_bib0005) 2019; 167 Toldy (10.1016/j.polymdegradstab.2022.110043_bib0006) 2012; 97 Feng (10.1016/j.polymdegradstab.2022.110043_bib0032) 2016; 6 Daud (10.1016/j.polymdegradstab.2022.110043_bib0020) 2019; 288 Gao (10.1016/j.polymdegradstab.2022.110043_bib0022) 2014; 6 Yu (10.1016/j.polymdegradstab.2022.110043_bib0011) 2022; 336 Wang (10.1016/j.polymdegradstab.2022.110043_bib0007) 2016; 314 Ren (10.1016/j.polymdegradstab.2022.110043_bib0027) 2021; 14 Yu (10.1016/j.polymdegradstab.2022.110043_bib0018) 2020; 396 Shi (10.1016/j.polymdegradstab.2022.110043_bib0029) 2021; 306 Chu (10.1016/j.polymdegradstab.2022.110043_bib0031) 2020; 27 Tian (10.1016/j.polymdegradstab.2022.110043_bib0041) 2013; 52 Bourbigot (10.1016/j.polymdegradstab.2022.110043_bib0004) 2009; 94 Mallakpour (10.1016/j.polymdegradstab.2022.110043_bib0014) 2021; 206 Yang (10.1016/j.polymdegradstab.2022.110043_bib0030) 2017; 4 Liu (10.1016/j.polymdegradstab.2022.110043_bib0042) 2018; 135 |
References_xml | – volume: 165 start-page: 161 year: 2018 ident: 10.1016/j.polymdegradstab.2022.110043_bib0010 article-title: Core-shell flame retardant/graphene oxide hybrid: a self-assembly strategy towards reducing fire hazard and improving toughness of polylactic acid publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2018.06.024 – volume: 52 start-page: 12235 issue: 20 year: 2017 ident: 10.1016/j.polymdegradstab.2022.110043_bib0023 article-title: The fire performance of polylactic acid containing a novel intumescent flame retardant and intercalated layered double hydroxides publication-title: J. Mater. Sci. doi: 10.1007/s10853-017-1354-5 – volume: 167 start-page: 146 year: 2019 ident: 10.1016/j.polymdegradstab.2022.110043_bib0005 article-title: An effective mono-component intumescent flame retardant for the enhancement of water resistance and fire safety of thermoplastic polyurethane composites publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2019.07.006 – volume: 94 start-page: 1979 issue: 11 year: 2009 ident: 10.1016/j.polymdegradstab.2022.110043_bib0025 article-title: Effects of organo-clay and sodium dodecyl sulfonate intercalated layered double hydroxide on thermal and flame behaviour of intumescent flame retarded polypropylene publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2009.07.024 – volume: 397 year: 2020 ident: 10.1016/j.polymdegradstab.2022.110043_bib0019 article-title: Layered double hydroxides materials for photo(electro-) catalytic applications publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125407 – volume: 219 year: 2021 ident: 10.1016/j.polymdegradstab.2022.110043_bib0038 article-title: Self-healing polyelectrolyte complex coating for flame retardant flexible polyurethane foam with enhanced mechanical property publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2021.108886 – volume: 622 start-page: 367 year: 2022 ident: 10.1016/j.polymdegradstab.2022.110043_bib0012 article-title: The influence of poorly-/well-dispersed organo-montmorillonite on interfacial compatibility, fire retardancy and smoke suppression of polypropylene/intumescent flame retardant composite system publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.04.101 – volume: 14 start-page: 3926 issue: 11 year: 2021 ident: 10.1016/j.polymdegradstab.2022.110043_bib0027 article-title: Smoke suppressant in flame retarded thermoplastic polyurethane composites: synergistic effect and mechanism study publication-title: Nano. Res. doi: 10.1007/s12274-021-3317-z – volume: 93 start-page: 80 issue: 1 year: 2018 ident: 10.1016/j.polymdegradstab.2022.110043_bib0028 article-title: Fabrication of Ni-Fe LDH/GF anode for enhanced Fe(III) regeneration in fuel cell-assisted chelated-iron dehydrosulfurization process publication-title: J. Chem. Technol. Biot. doi: 10.1002/jctb.5323 – volume: 155 year: 2020 ident: 10.1016/j.polymdegradstab.2022.110043_bib0021 article-title: Preparation of nickel-aluminum hydrotalcite nanosheet-coated carbon nanofibers and their application in the detection of salidroside publication-title: Microchem. J. doi: 10.1016/j.microc.2020.104652 – volume: 178 year: 2020 ident: 10.1016/j.polymdegradstab.2022.110043_bib0009 article-title: Phosphorus-containing organic-inorganic hybrid nanoparticles for the smoke suppression and flame retardancy of thermoplastic polyurethane publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2020.109179 – volume: 28 start-page: 9505 issue: 14 year: 2021 ident: 10.1016/j.polymdegradstab.2022.110043_bib0046 article-title: Synthesis of a novel synergistic flame retardant based on cyclopolysiloxane and its flame retardant coating on cotton fabric publication-title: Cellulose doi: 10.1007/s10570-021-04127-8 – volume: 135 start-page: 46359 issue: 23 year: 2018 ident: 10.1016/j.polymdegradstab.2022.110043_bib0042 article-title: Synergistic effect between aluminum hypophosphite and a new intumescent flame retardant system in poly(lactic acid) publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.46359 – volume: 400 year: 2020 ident: 10.1016/j.polymdegradstab.2022.110043_bib0008 article-title: Novel piperazine-containing oligomer as flame retardant and crystallization induction additive for thermoplastics polyurethane publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125941 – volume: 404 year: 2021 ident: 10.1016/j.polymdegradstab.2022.110043_bib0017 article-title: Highly efficient removal of hexavalent chromium from aqueous solution by calcined Mg/Al-layered double hydroxides/polyaniline composites publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127084 – volume: 288 year: 2019 ident: 10.1016/j.polymdegradstab.2022.110043_bib0020 article-title: A review on the recent advances, challenges and future aspect of layered double hydroxides (LDH) – containing hybrids as promising adsorbents for dyes removal publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2019.110989 – volume: 188 year: 2021 ident: 10.1016/j.polymdegradstab.2022.110043_bib0043 article-title: An urethane-based phosphonate ester for improving flame retardancy and smoke suppression of thermoplastic polyurethane publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2021.109568 – volume: 97 start-page: 2524 issue: 12 year: 2012 ident: 10.1016/j.polymdegradstab.2022.110043_bib0006 article-title: Flame retardancy of thermoplastics polyurethanes publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2012.07.015 – volume: 160 start-page: 168 year: 2019 ident: 10.1016/j.polymdegradstab.2022.110043_bib0036 article-title: Effects of carboxymethyl chitosan microencapsulated melamine polyphosphate on the flame retardancy and water resistance of thermoplastic polyurethane publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2018.12.019 – volume: 161 start-page: 298 year: 2019 ident: 10.1016/j.polymdegradstab.2022.110043_bib0045 article-title: A novel bio-based flame retardant for polypropylene from phytic acid publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2019.02.005 – volume: 147 start-page: 142 year: 2018 ident: 10.1016/j.polymdegradstab.2022.110043_bib0026 article-title: Intercalation of phosphotungstic acid into layered double hydroxides by reconstruction method and its application in intumescent flame retardant poly (lactic acid) composites publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2017.12.004 – volume: 4 start-page: 1173 issue: 7 year: 2017 ident: 10.1016/j.polymdegradstab.2022.110043_bib0030 article-title: In situ growth of ultrathin Ni–Fe LDH nanosheets for high performance oxygen evolution reaction publication-title: Inorg. Chem. Front. doi: 10.1039/C7QI00167C – volume: 94 start-page: 1230 issue: 8 year: 2009 ident: 10.1016/j.polymdegradstab.2022.110043_bib0004 article-title: Polyhedral oligomeric silsesquioxane as flame retardant for thermoplastic polyurethane publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2009.04.016 – volume: 149 year: 2020 ident: 10.1016/j.polymdegradstab.2022.110043_bib0013 article-title: Improving flame retardancy and self-cleaning performance of cotton fabric via a coating of in-situ growing layered double hydroxides (LDHs) on polydopamine publication-title: Prog. Org. Coat. – volume: 52 start-page: 6138 issue: 18 year: 2013 ident: 10.1016/j.polymdegradstab.2022.110043_bib0034 article-title: Controlled formation of self-extinguishing intumescent coating on ramie fabric via layer-by-layer assembly publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie3031554 – volume: 11 start-page: 968 issue: 3 year: 2020 ident: 10.1016/j.polymdegradstab.2022.110043_bib0033 article-title: NiFe layered double hydroxide (LDH) nanosheet catalysts with Fe as electron transfer mediator for enhanced persulfate activation publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b03597 – volume: 28 start-page: 8735 issue: 13 year: 2021 ident: 10.1016/j.polymdegradstab.2022.110043_bib0037 article-title: Preparation of a novel P/Si polymer and its synergistic flame retardant application on cotton fabric publication-title: Cellulose doi: 10.1007/s10570-021-04054-8 – volume: 138 start-page: 50950 issue: 37 year: 2021 ident: 10.1016/j.polymdegradstab.2022.110043_bib0040 article-title: Preparation of the organic–inorganic double-shell microencapsulated aluminum hypophosphite and its improved flame retardancy and mechanical properties of epoxy resin composites publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.50950 – volume: 396 year: 2020 ident: 10.1016/j.polymdegradstab.2022.110043_bib0018 article-title: Hydrophobic cross-linked zein-based nanofibers with efficient air filtration and improved moisture stability publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125373 – volume: 27 start-page: 3485 issue: 6 year: 2020 ident: 10.1016/j.polymdegradstab.2022.110043_bib0031 article-title: Construction of hierarchical layered double hydroxide/poly(dimethylsiloxane) composite coatings on ramie fabric surfaces for oil/water separation and flame retardancy publication-title: Cellulose doi: 10.1007/s10570-020-03017-9 – volume: 165 start-page: 126 year: 2019 ident: 10.1016/j.polymdegradstab.2022.110043_bib0002 article-title: Electrostatic action induced interfacial accumulation of layered double hydroxides towards highly efficient flame retardance and mechanical enhancement of thermoplastic polyurethane/ammonium polyphosphate publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2019.05.006 – volume: 336 year: 2022 ident: 10.1016/j.polymdegradstab.2022.110043_bib0011 article-title: Interface nanoengineering of a core-shell structured biobased fire retardant for fire-retarding polylactide with enhanced toughness and UV protection publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.130372 – volume: 39 start-page: 522 issue: 2 year: 2018 ident: 10.1016/j.polymdegradstab.2022.110043_bib0024 article-title: Synergistic effects of modified hydrotalcite on improving the fire resistance of ethylene vinyl acetate containing intumescent flame retardants publication-title: Polym. Compos. doi: 10.1002/pc.23964 – volume: 91 year: 2022 ident: 10.1016/j.polymdegradstab.2022.110043_bib0015 article-title: Synergistically coupling of 3D FeNi-LDH arrays with Ti3C2Tx-MXene nanosheets toward superior symmetric supercapacitor publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106633 – volume: 6 start-page: 5094 issue: 7 year: 2014 ident: 10.1016/j.polymdegradstab.2022.110043_bib0022 article-title: Synthesis of highly efficient flame retardant high-density polyethylene nanocomposites with inorgano-layered double hydroxides as nanofiller using solvent mixing method publication-title: ACS Appl. Mater. Int. doi: 10.1021/am500265a – volume: 26 start-page: 255 issue: 3 year: 2015 ident: 10.1016/j.polymdegradstab.2022.110043_bib0039 article-title: Synergistic effect of aluminum hypophosphite and intumescent flame retardants in polylactide publication-title: Polym. Adv. Technol. doi: 10.1002/pat.3451 – volume: 55 start-page: 11175 issue: 42 year: 2016 ident: 10.1016/j.polymdegradstab.2022.110043_bib0035 article-title: Flame retardancy and smoke suppression of MgAl layered double hydroxides containing P and Si in polyurethane elastomer publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.6b02708 – volume: 206 year: 2021 ident: 10.1016/j.polymdegradstab.2022.110043_bib0014 article-title: Current advances on polymer-layered double hydroxides/metal oxides nanocomposites and bionanocomposites: fabrications and applications in the textile industry and nanofibers publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2021.106054 – volume: 52 start-page: 10905 issue: 32 year: 2013 ident: 10.1016/j.polymdegradstab.2022.110043_bib0041 article-title: Synergistic effect between a novel char forming agent and ammonium polyphosphate on flame retardancy and thermal properties of polypropylene publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie401058u – volume: 167 start-page: 356 year: 2017 ident: 10.1016/j.polymdegradstab.2022.110043_bib0003 article-title: Preparation and characterization of chitosan derivatives and their application as flame retardants in thermoplastic polyurethane publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2017.03.011 – volume: 6 start-page: 34004 year: 2016 ident: 10.1016/j.polymdegradstab.2022.110043_bib0032 article-title: N-doped graphene layers encapsulated NiFe alloy nanoparticles derived from MOFs with superior electrochemical performance for oxygen evolution reaction publication-title: Sci. Rep. doi: 10.1038/srep34004 – volume: 306 year: 2021 ident: 10.1016/j.polymdegradstab.2022.110043_bib0029 article-title: Effect of N-doping, exfoliation, defect-inducing of Ni-Fe layered double hydroxide (Ni-Fe LDH) nanosheets on catalytic hydrogen storage of N-ethylcarbazole over Ru/Ni-Fe LDH publication-title: Fuel doi: 10.1016/j.fuel.2021.121688 – volume: 421 year: 2021 ident: 10.1016/j.polymdegradstab.2022.110043_bib0044 article-title: Facile synthesis of an efficient phosphonamide flame retardant for simultaneous enhancement of fire safety and crystallization rate of poly (lactic acid) publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127761 – volume: 314 start-page: 260 year: 2016 ident: 10.1016/j.polymdegradstab.2022.110043_bib0007 article-title: The influence of zinc hydroxystannate on reducing toxic gases (CO, NO(x) and HCN) generation and fire hazards of thermoplastic polyurethane composites publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.04.029 – volume: 216 year: 2022 ident: 10.1016/j.polymdegradstab.2022.110043_bib0001 article-title: Fabrication of a hybrid from metal organic framework and sepiolite (ZIF-8@SEP) for reducing the fire hazards in thermoplastic polyurethane publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2021.106376 – volume: 8 start-page: 4966 issue: 12 year: 2020 ident: 10.1016/j.polymdegradstab.2022.110043_bib0016 article-title: In situ cascade derivation toward a hierarchical layered double hydroxide magnetic absorbent for high-performance protein separation publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c00934 |
SSID | ssj0000451 |
Score | 2.5453007 |
Snippet | Aluminum hypophosphite (AHP), as an effective phosphorus-based flame retardant used in thermoplastic polyurethane (TPU), released a large amount of smoke and... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 110043 |
SubjectTerms | aluminum combustion degradation flame retardants heat oxygen polyurethanes smoke tensile strength thermoplastics toxicity |
Title | Preparation of Ni-Fe layered double hydroxides and its application in thermoplastic polyurethane with flame retardancy and smoke suppression |
URI | https://www.proquest.com/docview/2718246334 |
Volume | 202 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdgSDAOCAaI8SUjwalKlThpkkpc0LRqmkbZoZV6i-rYZt3apkoTaeXAX8AfzXu207hoQoVLVFmx0_j3i_2-_B4hH0OZRjIKhCd8HnqR8rnX50ngqTwPc-7HoqfwgPPXYXw2js4nvYnjMcXTJRXv5j_uPFfyP6hCG-CKp2T_AdntoNAAvwFfuALCcN0L48tSmtTdRugbzryB7MynG6y_2RFFjaeirjaiLG5nQq63fgLHaW3DHMtFsQIxGpO3ror5pi4lWtSlsdIqIA0WV6mATLgW63HWi-JGdtb1ygbSLl0p9xLGWOjS49_LqSnaZDpVJiv41ow_qbX19aouC7uDYmzQTLeeO8S1TZPabdK7JvRTcubaLkDtbSLnWnNm4IV9G9hq12O4sbPq6lR2oXfnKm8MDtddnJGFeRV8gS4-wnZst7fGpT_8lg3GFxfZ6HQyuk8eMFArsOJF92cbEoS5dkzIq_lXD8mnNh7wLw_blWl2t3Qtp4yekidWwaBfDFuekXtyeUQenTR1_Y7IYycF5XPyy-EQLRTVHKKWQ9RwiLYcogAjBQ5Rh0N0tqQ7HKIuhyhyiGoO0ZZDehzNIepw6AUZD05HJ2eerdDh5aHPKi_p8UQFMpj6vVyBJI5eWNEHnQE-_FjEPGUS1O0gzRlIvinjaSgZ5n9STEWin6vwJTlYFkv5ilAGerOUSU-lvoriqUqFSBXjSdSfSq4S_5h8buY4y236eqyiMs-aOMXr7A-IMoQoMxAdk3jbfWXyuOzb8UMDaAZAoTsN5q6o1xkDsY5FcRhGr_e45w05bL-At-SgKmv5DuTZir_XJPwNfpesVA |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+of+Ni-Fe+layered+double+hydroxides+and+its+application+in+thermoplastic+polyurethane+with+flame+retardancy+and+smoke+suppression&rft.jtitle=Polymer+degradation+and+stability&rft.au=Xu%2C+Shurong&rft.au=Liu%2C+Jian&rft.au=Liu%2C+Xuan&rft.au=Li%2C+Hongfei&rft.date=2022-08-01&rft.issn=0141-3910&rft.volume=202+p.110043-&rft_id=info:doi/10.1016%2Fj.polymdegradstab.2022.110043&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-3910&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-3910&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-3910&client=summon |