Preparation of Ni-Fe layered double hydroxides and its application in thermoplastic polyurethane with flame retardancy and smoke suppression

Aluminum hypophosphite (AHP), as an effective phosphorus-based flame retardant used in thermoplastic polyurethane (TPU), released a large amount of smoke and toxic gasses during combustion. In this work, a flame retardant filler, Ni-Fe layered double hydroxides (NiFe-LDHs), was synthesized and appli...

Full description

Saved in:
Bibliographic Details
Published inPolymer degradation and stability Vol. 202; p. 110043
Main Authors Xu, Shurong, Liu, Jian, Liu, Xuan, Li, Hongfei, Gu, Xiaoyu, Sun, Jun, Zhang, Sheng
Format Journal Article
LanguageEnglish
Published 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aluminum hypophosphite (AHP), as an effective phosphorus-based flame retardant used in thermoplastic polyurethane (TPU), released a large amount of smoke and toxic gasses during combustion. In this work, a flame retardant filler, Ni-Fe layered double hydroxides (NiFe-LDHs), was synthesized and applied in TPU together with AHP. The limiting oxygen index (LOI) of the TPU/6AHP/1NiFe-LDH composite reached 30.7% with a V-0 rating in the UL-94 test. Compared with neat TPU, the peak heat release rate (pHRR) and total heat release (THR) values of TPU/6AHP/1NiFe-LDH sample were reduced by 67.9% and 40.8%, respectively. Moreover, both the smoke production and CO/CO₂ yield were also decreased sharply. It was proposed that NiFe-LDH provided the effect of catalyzing char formation, and the obtained dense char layer was able to block both heat and smoke release. In addition, the addition of NiFe-LDH had little effect on the mechanical properties of TPU, and the tensile strength and elongation at break only decreased by 6.0% and 6.9%, respectively. This work provides a new strategy for fillers and flame retardants to improve the flame retardant properties and smoke suppression of TPU.
AbstractList Aluminum hypophosphite (AHP), as an effective phosphorus-based flame retardant used in thermoplastic polyurethane (TPU), released a large amount of smoke and toxic gasses during combustion. In this work, a flame retardant filler, Ni-Fe layered double hydroxides (NiFe-LDHs), was synthesized and applied in TPU together with AHP. The limiting oxygen index (LOI) of the TPU/6AHP/1NiFe-LDH composite reached 30.7% with a V-0 rating in the UL-94 test. Compared with neat TPU, the peak heat release rate (pHRR) and total heat release (THR) values of TPU/6AHP/1NiFe-LDH sample were reduced by 67.9% and 40.8%, respectively. Moreover, both the smoke production and CO/CO₂ yield were also decreased sharply. It was proposed that NiFe-LDH provided the effect of catalyzing char formation, and the obtained dense char layer was able to block both heat and smoke release. In addition, the addition of NiFe-LDH had little effect on the mechanical properties of TPU, and the tensile strength and elongation at break only decreased by 6.0% and 6.9%, respectively. This work provides a new strategy for fillers and flame retardants to improve the flame retardant properties and smoke suppression of TPU.
ArticleNumber 110043
Author Liu, Xuan
Liu, Jian
Sun, Jun
Zhang, Sheng
Gu, Xiaoyu
Xu, Shurong
Li, Hongfei
Author_xml – sequence: 1
  givenname: Shurong
  surname: Xu
  fullname: Xu, Shurong
– sequence: 2
  givenname: Jian
  surname: Liu
  fullname: Liu, Jian
– sequence: 3
  givenname: Xuan
  surname: Liu
  fullname: Liu, Xuan
– sequence: 4
  givenname: Hongfei
  surname: Li
  fullname: Li, Hongfei
– sequence: 5
  givenname: Xiaoyu
  surname: Gu
  fullname: Gu, Xiaoyu
– sequence: 6
  givenname: Jun
  surname: Sun
  fullname: Sun, Jun
– sequence: 7
  givenname: Sheng
  surname: Zhang
  fullname: Zhang, Sheng
BookMark eNqNkD-P1DAQxV0c0v3hvoObk2iyeGwnmy0o0IrjkE5AAbXl2ONbL05sbEeQ78CHJntLdRXTPGn03k8z75pcTHFCQu6AbYBB9_a4STEso8WnrG2pethwxvkGgDEpLsgVAwmN2AG7JNelHNk6soUr8udrxqSzrj5ONDr62Tf3SINeMKOlNs5DQHpYbI6_vcVC9WSpr6umFLw5x_xE6wHzGFPQpXpDT6fMGetBT0h_-XqgLugR6brS2erJLM-cMsYfSMucUsZSVtJr8srpUPD2n96Q7_cfvu0fmscvHz_t3z82RjBem207bB0gaNYa13bQyra3ux0XbBCd7YaeI8geesNZJ3s-9AI5rC7HnbQ748QNeXPmphx_zliqGn0xGMJ6b5yL4lvoueyEkKt1f7aaHEvJ6JTx9fntmrUPCpg69a-O6kX_6tS_Ove_Ut69oKTsR52X_8z_Bem3m5c
CitedBy_id crossref_primary_10_1002_app_56352
crossref_primary_10_1016_j_conbuildmat_2024_137070
crossref_primary_10_1002_smll_202402349
crossref_primary_10_1016_j_cej_2023_146837
crossref_primary_10_1016_j_porgcoat_2023_107884
crossref_primary_10_1007_s10570_022_04929_4
crossref_primary_10_1016_j_cej_2024_156145
crossref_primary_10_1007_s10853_023_08554_9
crossref_primary_10_1016_j_polymdegradstab_2024_111120
crossref_primary_10_1016_j_scitotenv_2023_163525
crossref_primary_10_1016_j_coco_2024_102142
crossref_primary_10_1016_j_jcis_2023_08_191
crossref_primary_10_1002_pat_6149
crossref_primary_10_1016_j_polymdegradstab_2024_111029
crossref_primary_10_1007_s00289_024_05479_4
crossref_primary_10_1007_s12221_023_00445_9
crossref_primary_10_1016_j_clay_2024_107489
crossref_primary_10_1016_j_polymdegradstab_2023_110572
crossref_primary_10_1002_slct_202203411
crossref_primary_10_1016_j_polymdegradstab_2023_110350
crossref_primary_10_1016_j_cej_2024_151619
crossref_primary_10_1016_j_polymdegradstab_2022_110153
crossref_primary_10_1002_app_56087
crossref_primary_10_1021_acsaenm_2c00061
crossref_primary_10_1016_j_jaap_2023_106210
crossref_primary_10_1016_j_apmt_2024_102233
crossref_primary_10_1016_j_polymdegradstab_2022_110238
crossref_primary_10_1021_acs_iecr_2c03105
crossref_primary_10_1007_s10973_024_13547_0
crossref_primary_10_1039_D2NJ04694F
crossref_primary_10_1016_j_jcis_2023_02_085
crossref_primary_10_1177_09506608241266302
crossref_primary_10_3390_polym16142044
crossref_primary_10_1016_j_chemosphere_2023_139115
crossref_primary_10_1002_app_53775
crossref_primary_10_1016_j_apt_2024_104759
crossref_primary_10_1016_j_polymdegradstab_2024_111136
crossref_primary_10_1016_j_ijbiomac_2024_129411
Cites_doi 10.1016/j.compscitech.2018.06.024
10.1007/s10853-017-1354-5
10.1016/j.polymdegradstab.2019.07.006
10.1016/j.polymdegradstab.2009.07.024
10.1016/j.cej.2020.125407
10.1016/j.compositesb.2021.108886
10.1016/j.jcis.2022.04.101
10.1007/s12274-021-3317-z
10.1002/jctb.5323
10.1016/j.microc.2020.104652
10.1016/j.polymdegradstab.2020.109179
10.1007/s10570-021-04127-8
10.1002/app.46359
10.1016/j.cej.2020.125941
10.1016/j.cej.2020.127084
10.1016/j.molliq.2019.110989
10.1016/j.polymdegradstab.2021.109568
10.1016/j.polymdegradstab.2012.07.015
10.1016/j.polymdegradstab.2018.12.019
10.1016/j.polymdegradstab.2019.02.005
10.1016/j.polymdegradstab.2017.12.004
10.1039/C7QI00167C
10.1016/j.polymdegradstab.2009.04.016
10.1021/ie3031554
10.1021/acs.jpclett.9b03597
10.1007/s10570-021-04054-8
10.1002/app.50950
10.1016/j.cej.2020.125373
10.1007/s10570-020-03017-9
10.1016/j.polymdegradstab.2019.05.006
10.1016/j.jclepro.2022.130372
10.1002/pc.23964
10.1016/j.nanoen.2021.106633
10.1021/am500265a
10.1002/pat.3451
10.1021/acs.iecr.6b02708
10.1016/j.clay.2021.106054
10.1021/ie401058u
10.1016/j.carbpol.2017.03.011
10.1038/srep34004
10.1016/j.fuel.2021.121688
10.1016/j.cej.2020.127761
10.1016/j.jhazmat.2016.04.029
10.1016/j.clay.2021.106376
10.1021/acssuschemeng.0c00934
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.polymdegradstab.2022.110043
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
ExternalDocumentID 10_1016_j_polymdegradstab_2022_110043
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADECG
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEZYN
AFJKZ
AFPUW
AFRZQ
AFTJW
AFXIZ
AFZHZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJSZI
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CITATION
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSH
SSK
SSM
SSZ
T5K
WH7
WUQ
XPP
~G-
7S9
L.6
ID FETCH-LOGICAL-c302t-75b7f1e1a05cf5615458d99230b36d6b82e14818c206482b83e21154f2f4d9cf3
ISSN 0141-3910
IngestDate Fri Jul 11 06:30:13 EDT 2025
Thu Apr 24 23:05:58 EDT 2025
Tue Jul 01 02:29:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c302t-75b7f1e1a05cf5615458d99230b36d6b82e14818c206482b83e21154f2f4d9cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2718246334
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2718246334
crossref_citationtrail_10_1016_j_polymdegradstab_2022_110043
crossref_primary_10_1016_j_polymdegradstab_2022_110043
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-00
20220801
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-00
PublicationDecade 2020
PublicationTitle Polymer degradation and stability
PublicationYear 2022
References Huang (10.1016/j.polymdegradstab.2022.110043_bib0002) 2019; 165
Liu (10.1016/j.polymdegradstab.2022.110043_bib0036) 2019; 160
Jin (10.1016/j.polymdegradstab.2022.110043_bib0023) 2017; 52
Liu (10.1016/j.polymdegradstab.2022.110043_bib0003) 2017; 167
Yuan (10.1016/j.polymdegradstab.2022.110043_bib0012) 2022; 622
Li (10.1016/j.polymdegradstab.2022.110043_bib0043) 2021; 188
Huang (10.1016/j.polymdegradstab.2022.110043_bib0009) 2020; 178
Gao (10.1016/j.polymdegradstab.2022.110043_bib0045) 2019; 161
Jing (10.1016/j.polymdegradstab.2022.110043_bib0010) 2018; 165
Long (10.1016/j.polymdegradstab.2022.110043_bib0017) 2021; 404
Chen (10.1016/j.polymdegradstab.2022.110043_bib0040) 2021; 138
Zhang (10.1016/j.polymdegradstab.2022.110043_bib0024) 2018; 39
Zhai (10.1016/j.polymdegradstab.2022.110043_bib0028) 2018; 93
Li (10.1016/j.polymdegradstab.2022.110043_bib0001) 2022; 216
Liu (10.1016/j.polymdegradstab.2022.110043_bib0037) 2021; 28
Shi (10.1016/j.polymdegradstab.2022.110043_bib0016) 2020; 8
Si (10.1016/j.polymdegradstab.2022.110043_bib0021) 2020; 155
Zhang (10.1016/j.polymdegradstab.2022.110043_bib0034) 2013; 52
Xu (10.1016/j.polymdegradstab.2022.110043_bib0035) 2016; 55
Liu (10.1016/j.polymdegradstab.2022.110043_bib0044) 2021; 421
Wang (10.1016/j.polymdegradstab.2022.110043_bib0013) 2020; 149
Zhang (10.1016/j.polymdegradstab.2022.110043_bib0015) 2022; 91
Zhao (10.1016/j.polymdegradstab.2022.110043_bib0019) 2020; 397
Du (10.1016/j.polymdegradstab.2022.110043_bib0025) 2009; 94
Meng (10.1016/j.polymdegradstab.2022.110043_bib0038) 2021; 219
Chen (10.1016/j.polymdegradstab.2022.110043_bib0008) 2020; 400
Yue (10.1016/j.polymdegradstab.2022.110043_bib0033) 2020; 11
Zhou (10.1016/j.polymdegradstab.2022.110043_bib0039) 2015; 26
Zhang (10.1016/j.polymdegradstab.2022.110043_bib0026) 2018; 147
Liu (10.1016/j.polymdegradstab.2022.110043_bib0046) 2021; 28
Liu (10.1016/j.polymdegradstab.2022.110043_bib0005) 2019; 167
Toldy (10.1016/j.polymdegradstab.2022.110043_bib0006) 2012; 97
Feng (10.1016/j.polymdegradstab.2022.110043_bib0032) 2016; 6
Daud (10.1016/j.polymdegradstab.2022.110043_bib0020) 2019; 288
Gao (10.1016/j.polymdegradstab.2022.110043_bib0022) 2014; 6
Yu (10.1016/j.polymdegradstab.2022.110043_bib0011) 2022; 336
Wang (10.1016/j.polymdegradstab.2022.110043_bib0007) 2016; 314
Ren (10.1016/j.polymdegradstab.2022.110043_bib0027) 2021; 14
Yu (10.1016/j.polymdegradstab.2022.110043_bib0018) 2020; 396
Shi (10.1016/j.polymdegradstab.2022.110043_bib0029) 2021; 306
Chu (10.1016/j.polymdegradstab.2022.110043_bib0031) 2020; 27
Tian (10.1016/j.polymdegradstab.2022.110043_bib0041) 2013; 52
Bourbigot (10.1016/j.polymdegradstab.2022.110043_bib0004) 2009; 94
Mallakpour (10.1016/j.polymdegradstab.2022.110043_bib0014) 2021; 206
Yang (10.1016/j.polymdegradstab.2022.110043_bib0030) 2017; 4
Liu (10.1016/j.polymdegradstab.2022.110043_bib0042) 2018; 135
References_xml – volume: 165
  start-page: 161
  year: 2018
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0010
  article-title: Core-shell flame retardant/graphene oxide hybrid: a self-assembly strategy towards reducing fire hazard and improving toughness of polylactic acid
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2018.06.024
– volume: 52
  start-page: 12235
  issue: 20
  year: 2017
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0023
  article-title: The fire performance of polylactic acid containing a novel intumescent flame retardant and intercalated layered double hydroxides
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-017-1354-5
– volume: 167
  start-page: 146
  year: 2019
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0005
  article-title: An effective mono-component intumescent flame retardant for the enhancement of water resistance and fire safety of thermoplastic polyurethane composites
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2019.07.006
– volume: 94
  start-page: 1979
  issue: 11
  year: 2009
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0025
  article-title: Effects of organo-clay and sodium dodecyl sulfonate intercalated layered double hydroxide on thermal and flame behaviour of intumescent flame retarded polypropylene
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2009.07.024
– volume: 397
  year: 2020
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0019
  article-title: Layered double hydroxides materials for photo(electro-) catalytic applications
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125407
– volume: 219
  year: 2021
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0038
  article-title: Self-healing polyelectrolyte complex coating for flame retardant flexible polyurethane foam with enhanced mechanical property
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2021.108886
– volume: 622
  start-page: 367
  year: 2022
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0012
  article-title: The influence of poorly-/well-dispersed organo-montmorillonite on interfacial compatibility, fire retardancy and smoke suppression of polypropylene/intumescent flame retardant composite system
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2022.04.101
– volume: 14
  start-page: 3926
  issue: 11
  year: 2021
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0027
  article-title: Smoke suppressant in flame retarded thermoplastic polyurethane composites: synergistic effect and mechanism study
  publication-title: Nano. Res.
  doi: 10.1007/s12274-021-3317-z
– volume: 93
  start-page: 80
  issue: 1
  year: 2018
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0028
  article-title: Fabrication of Ni-Fe LDH/GF anode for enhanced Fe(III) regeneration in fuel cell-assisted chelated-iron dehydrosulfurization process
  publication-title: J. Chem. Technol. Biot.
  doi: 10.1002/jctb.5323
– volume: 155
  year: 2020
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0021
  article-title: Preparation of nickel-aluminum hydrotalcite nanosheet-coated carbon nanofibers and their application in the detection of salidroside
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2020.104652
– volume: 178
  year: 2020
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0009
  article-title: Phosphorus-containing organic-inorganic hybrid nanoparticles for the smoke suppression and flame retardancy of thermoplastic polyurethane
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2020.109179
– volume: 28
  start-page: 9505
  issue: 14
  year: 2021
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0046
  article-title: Synthesis of a novel synergistic flame retardant based on cyclopolysiloxane and its flame retardant coating on cotton fabric
  publication-title: Cellulose
  doi: 10.1007/s10570-021-04127-8
– volume: 135
  start-page: 46359
  issue: 23
  year: 2018
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0042
  article-title: Synergistic effect between aluminum hypophosphite and a new intumescent flame retardant system in poly(lactic acid)
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.46359
– volume: 400
  year: 2020
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0008
  article-title: Novel piperazine-containing oligomer as flame retardant and crystallization induction additive for thermoplastics polyurethane
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125941
– volume: 404
  year: 2021
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0017
  article-title: Highly efficient removal of hexavalent chromium from aqueous solution by calcined Mg/Al-layered double hydroxides/polyaniline composites
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127084
– volume: 288
  year: 2019
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0020
  article-title: A review on the recent advances, challenges and future aspect of layered double hydroxides (LDH) – containing hybrids as promising adsorbents for dyes removal
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2019.110989
– volume: 188
  year: 2021
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0043
  article-title: An urethane-based phosphonate ester for improving flame retardancy and smoke suppression of thermoplastic polyurethane
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2021.109568
– volume: 97
  start-page: 2524
  issue: 12
  year: 2012
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0006
  article-title: Flame retardancy of thermoplastics polyurethanes
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2012.07.015
– volume: 160
  start-page: 168
  year: 2019
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0036
  article-title: Effects of carboxymethyl chitosan microencapsulated melamine polyphosphate on the flame retardancy and water resistance of thermoplastic polyurethane
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2018.12.019
– volume: 161
  start-page: 298
  year: 2019
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0045
  article-title: A novel bio-based flame retardant for polypropylene from phytic acid
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2019.02.005
– volume: 147
  start-page: 142
  year: 2018
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0026
  article-title: Intercalation of phosphotungstic acid into layered double hydroxides by reconstruction method and its application in intumescent flame retardant poly (lactic acid) composites
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2017.12.004
– volume: 4
  start-page: 1173
  issue: 7
  year: 2017
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0030
  article-title: In situ growth of ultrathin Ni–Fe LDH nanosheets for high performance oxygen evolution reaction
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C7QI00167C
– volume: 94
  start-page: 1230
  issue: 8
  year: 2009
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0004
  article-title: Polyhedral oligomeric silsesquioxane as flame retardant for thermoplastic polyurethane
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2009.04.016
– volume: 149
  year: 2020
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0013
  article-title: Improving flame retardancy and self-cleaning performance of cotton fabric via a coating of in-situ growing layered double hydroxides (LDHs) on polydopamine
  publication-title: Prog. Org. Coat.
– volume: 52
  start-page: 6138
  issue: 18
  year: 2013
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0034
  article-title: Controlled formation of self-extinguishing intumescent coating on ramie fabric via layer-by-layer assembly
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie3031554
– volume: 11
  start-page: 968
  issue: 3
  year: 2020
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0033
  article-title: NiFe layered double hydroxide (LDH) nanosheet catalysts with Fe as electron transfer mediator for enhanced persulfate activation
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b03597
– volume: 28
  start-page: 8735
  issue: 13
  year: 2021
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0037
  article-title: Preparation of a novel P/Si polymer and its synergistic flame retardant application on cotton fabric
  publication-title: Cellulose
  doi: 10.1007/s10570-021-04054-8
– volume: 138
  start-page: 50950
  issue: 37
  year: 2021
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0040
  article-title: Preparation of the organic–inorganic double-shell microencapsulated aluminum hypophosphite and its improved flame retardancy and mechanical properties of epoxy resin composites
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.50950
– volume: 396
  year: 2020
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0018
  article-title: Hydrophobic cross-linked zein-based nanofibers with efficient air filtration and improved moisture stability
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125373
– volume: 27
  start-page: 3485
  issue: 6
  year: 2020
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0031
  article-title: Construction of hierarchical layered double hydroxide/poly(dimethylsiloxane) composite coatings on ramie fabric surfaces for oil/water separation and flame retardancy
  publication-title: Cellulose
  doi: 10.1007/s10570-020-03017-9
– volume: 165
  start-page: 126
  year: 2019
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0002
  article-title: Electrostatic action induced interfacial accumulation of layered double hydroxides towards highly efficient flame retardance and mechanical enhancement of thermoplastic polyurethane/ammonium polyphosphate
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2019.05.006
– volume: 336
  year: 2022
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0011
  article-title: Interface nanoengineering of a core-shell structured biobased fire retardant for fire-retarding polylactide with enhanced toughness and UV protection
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.130372
– volume: 39
  start-page: 522
  issue: 2
  year: 2018
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0024
  article-title: Synergistic effects of modified hydrotalcite on improving the fire resistance of ethylene vinyl acetate containing intumescent flame retardants
  publication-title: Polym. Compos.
  doi: 10.1002/pc.23964
– volume: 91
  year: 2022
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0015
  article-title: Synergistically coupling of 3D FeNi-LDH arrays with Ti3C2Tx-MXene nanosheets toward superior symmetric supercapacitor
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106633
– volume: 6
  start-page: 5094
  issue: 7
  year: 2014
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0022
  article-title: Synthesis of highly efficient flame retardant high-density polyethylene nanocomposites with inorgano-layered double hydroxides as nanofiller using solvent mixing method
  publication-title: ACS Appl. Mater. Int.
  doi: 10.1021/am500265a
– volume: 26
  start-page: 255
  issue: 3
  year: 2015
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0039
  article-title: Synergistic effect of aluminum hypophosphite and intumescent flame retardants in polylactide
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.3451
– volume: 55
  start-page: 11175
  issue: 42
  year: 2016
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0035
  article-title: Flame retardancy and smoke suppression of MgAl layered double hydroxides containing P and Si in polyurethane elastomer
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.6b02708
– volume: 206
  year: 2021
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0014
  article-title: Current advances on polymer-layered double hydroxides/metal oxides nanocomposites and bionanocomposites: fabrications and applications in the textile industry and nanofibers
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2021.106054
– volume: 52
  start-page: 10905
  issue: 32
  year: 2013
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0041
  article-title: Synergistic effect between a novel char forming agent and ammonium polyphosphate on flame retardancy and thermal properties of polypropylene
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie401058u
– volume: 167
  start-page: 356
  year: 2017
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0003
  article-title: Preparation and characterization of chitosan derivatives and their application as flame retardants in thermoplastic polyurethane
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2017.03.011
– volume: 6
  start-page: 34004
  year: 2016
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0032
  article-title: N-doped graphene layers encapsulated NiFe alloy nanoparticles derived from MOFs with superior electrochemical performance for oxygen evolution reaction
  publication-title: Sci. Rep.
  doi: 10.1038/srep34004
– volume: 306
  year: 2021
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0029
  article-title: Effect of N-doping, exfoliation, defect-inducing of Ni-Fe layered double hydroxide (Ni-Fe LDH) nanosheets on catalytic hydrogen storage of N-ethylcarbazole over Ru/Ni-Fe LDH
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.121688
– volume: 421
  year: 2021
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0044
  article-title: Facile synthesis of an efficient phosphonamide flame retardant for simultaneous enhancement of fire safety and crystallization rate of poly (lactic acid)
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127761
– volume: 314
  start-page: 260
  year: 2016
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0007
  article-title: The influence of zinc hydroxystannate on reducing toxic gases (CO, NO(x) and HCN) generation and fire hazards of thermoplastic polyurethane composites
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.04.029
– volume: 216
  year: 2022
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0001
  article-title: Fabrication of a hybrid from metal organic framework and sepiolite (ZIF-8@SEP) for reducing the fire hazards in thermoplastic polyurethane
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2021.106376
– volume: 8
  start-page: 4966
  issue: 12
  year: 2020
  ident: 10.1016/j.polymdegradstab.2022.110043_bib0016
  article-title: In situ cascade derivation toward a hierarchical layered double hydroxide magnetic absorbent for high-performance protein separation
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c00934
SSID ssj0000451
Score 2.5453007
Snippet Aluminum hypophosphite (AHP), as an effective phosphorus-based flame retardant used in thermoplastic polyurethane (TPU), released a large amount of smoke and...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 110043
SubjectTerms aluminum
combustion
degradation
flame retardants
heat
oxygen
polyurethanes
smoke
tensile strength
thermoplastics
toxicity
Title Preparation of Ni-Fe layered double hydroxides and its application in thermoplastic polyurethane with flame retardancy and smoke suppression
URI https://www.proquest.com/docview/2718246334
Volume 202
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdgSDAOCAaI8SUjwalKlThpkkpc0LRqmkbZoZV6i-rYZt3apkoTaeXAX8AfzXu207hoQoVLVFmx0_j3i_2-_B4hH0OZRjIKhCd8HnqR8rnX50ngqTwPc-7HoqfwgPPXYXw2js4nvYnjMcXTJRXv5j_uPFfyP6hCG-CKp2T_AdntoNAAvwFfuALCcN0L48tSmtTdRugbzryB7MynG6y_2RFFjaeirjaiLG5nQq63fgLHaW3DHMtFsQIxGpO3ror5pi4lWtSlsdIqIA0WV6mATLgW63HWi-JGdtb1ygbSLl0p9xLGWOjS49_LqSnaZDpVJiv41ow_qbX19aouC7uDYmzQTLeeO8S1TZPabdK7JvRTcubaLkDtbSLnWnNm4IV9G9hq12O4sbPq6lR2oXfnKm8MDtddnJGFeRV8gS4-wnZst7fGpT_8lg3GFxfZ6HQyuk8eMFArsOJF92cbEoS5dkzIq_lXD8mnNh7wLw_blWl2t3Qtp4yekidWwaBfDFuekXtyeUQenTR1_Y7IYycF5XPyy-EQLRTVHKKWQ9RwiLYcogAjBQ5Rh0N0tqQ7HKIuhyhyiGoO0ZZDehzNIepw6AUZD05HJ2eerdDh5aHPKi_p8UQFMpj6vVyBJI5eWNEHnQE-_FjEPGUS1O0gzRlIvinjaSgZ5n9STEWin6vwJTlYFkv5ilAGerOUSU-lvoriqUqFSBXjSdSfSq4S_5h8buY4y236eqyiMs-aOMXr7A-IMoQoMxAdk3jbfWXyuOzb8UMDaAZAoTsN5q6o1xkDsY5FcRhGr_e45w05bL-At-SgKmv5DuTZir_XJPwNfpesVA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+of+Ni-Fe+layered+double+hydroxides+and+its+application+in+thermoplastic+polyurethane+with+flame+retardancy+and+smoke+suppression&rft.jtitle=Polymer+degradation+and+stability&rft.au=Xu%2C+Shurong&rft.au=Liu%2C+Jian&rft.au=Liu%2C+Xuan&rft.au=Li%2C+Hongfei&rft.date=2022-08-01&rft.issn=0141-3910&rft.volume=202+p.110043-&rft_id=info:doi/10.1016%2Fj.polymdegradstab.2022.110043&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-3910&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-3910&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-3910&client=summon