The antihyperglycemic agent englitazone prevents the defect in glucose transport in rats fed a high-fat diet
The effects of englitazone in male Wistar rats fed a high-fat diet (59% of calories as fat) were compared with control rats fed a high-carbohydrate diet (69% of calories as carbohydrate) (5-15 animals per group). Insulin-stimulated (17 nmol/l) 2-deoxy-D-glucose (2-DG) uptake was inhibited 31% in adi...
Saved in:
Published in | Diabetes (New York, N.Y.) Vol. 45; no. 1; pp. 60 - 66 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Alexandria, VA
American Diabetes Association
1996
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The effects of englitazone in male Wistar rats fed a high-fat diet (59% of calories as fat) were compared with control rats fed a high-carbohydrate diet (69% of calories as carbohydrate) (5-15 animals per group). Insulin-stimulated (17 nmol/l) 2-deoxy-D-glucose (2-DG) uptake was inhibited 31% in adipocytes isolated from rats on the high-fat diet for 3 weeks, but englitazone (50 mg/kg for the last 7 days) normalized the response. There was a selective decrease in GLUT4 (54 +/- 5% of high-carbohydrate) in epididymal fat from rats on the high-fat diet for 3 weeks, but englitazone treatment did not reverse the defect in GLUT4 (43 +/- 8% of high-carbohydrate) or increase GLUT1 (81 +/- 12% of high-carbohydrate). Englitazone normalized oral glucose (1 g/kg body wt) intolerance and excessive (210% of high-carbohydrate) liver glycogen deposition (from [14C]glucose) caused by the high-fat diet. The high-fat diet tended to decrease insulin receptor substrate-1 (IRS-1) and phosphatidylinositol-3'-kinase (PI-3-kinase) expression in epididymal fat (26% decrease; P < 0.1). Englitazone did not reverse this decrease in IRS-1 and PI-3-kinase levels in fat from high-fat-fed rats (there was a further 25-30% decrease, P < 0.05), nor did it increase PI-3-kinase activity in 3T3-L1 adipocytes under conditions (48 h incubation) where it stimulated 2-DG uptake sixfold or enhanced insulin-stimulated 2-DG uptake. In summary, englitazone prevented the insulin resistance associated with a high-fat diet, but the mechanism of action does not involve changes in fat or muscle glucose transporter content and may not involve activation of the insulin signaling pathway via PI-3-kinase. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0012-1797 1939-327X |
DOI: | 10.2337/diab.45.1.60 |