Graph-Driven Simultaneous and Proportional Estimation of Wrist Angle and Grasp Force via High-Density EMG

Myoelectric prostheses are generally unable to accurately control the position and force simultaneously, prohibiting natural and intuitive human-machine interaction. This issue is attributed to the limitations of myoelectric interfaces in effectively decoding multi-degree-of-freedom (multi-DoF) kine...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 28; no. 5; pp. 2723 - 2732
Main Authors Li, Dongxuan, Kang, Peiqi, Yu, Yang, Shull, Peter B.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Myoelectric prostheses are generally unable to accurately control the position and force simultaneously, prohibiting natural and intuitive human-machine interaction. This issue is attributed to the limitations of myoelectric interfaces in effectively decoding multi-degree-of-freedom (multi-DoF) kinematic and kinetic information. We thus propose a novel multi-task, spatial-temporal model driven by graphical high-density electromyography (HD-EMG) for simultaneous and proportional control of wrist angle and grasp force. Twelve subjects were recruited to perform three multi-DoF movements, including wrist pronation/supination, wrist flexion/extension, and wrist abduction/adduction while varying grasp force. Experimental results demonstrated that the proposed model outperformed five baseline models, with the normalized root mean square error of 13.2% and 9.7% and the correlation coefficient of 89.6% and 91.9% for wrist angle and grasp force estimation, respectively. In addition, the proposed model still maintained comparable accuracy even with a significant reduction in the number of HD-EMG electrodes. To the best of our knowledge, this is the first study to achieve simultaneous and proportional wrist angle and grasp force control via HD-EMG and has the potential to empower prostheses users to perform a broader range of tasks with greater precision and control, ultimately enhancing their independence and quality of life.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2168-2194
2168-2208
2168-2208
DOI:10.1109/JBHI.2024.3373432