Influence of the Intrinsic Characteristics of Cementitious Materials on Biofouling in the Marine Environment

Coastal marine ecosystems provide essential benefits and services to humanity, but many are rapidly degrading. Human activities are leading to significant land take along coastlines and to major changes in ecosystems. Ecological engineering tools capable of promoting large-scale restoration of coast...

Full description

Saved in:
Bibliographic Details
Published inSustainability Vol. 13; no. 5; p. 2625
Main Authors Hayek, Mahmoud, Salgues, Marie, Souche, Jean-Claude, Cunge, Etienne, Giraudel, Cyril, Paireau, Osanne
Format Journal Article
LanguageEnglish
Published MDPI 01.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Coastal marine ecosystems provide essential benefits and services to humanity, but many are rapidly degrading. Human activities are leading to significant land take along coastlines and to major changes in ecosystems. Ecological engineering tools capable of promoting large-scale restoration of coastal ecosystems are needed today in the face of intensifying climatic stress and human activities. Concrete is one of the materials most commonly used in the construction of coastal and marine infrastructure. Immersed in seawater, concretes are rapidly colonized by microorganisms and macroorganisms. Surface colonization and subsequent biofilm and biofouling formation provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. The new challenge of the 21st century is to develop innovative concretes that, in addition to their usual properties, provide improved bioreceptivity in order to enhance marine biodiversity. The aim of this study is to master and clarify the intrinsic parameters that influence the bioreceptivity (biocolonization) of cementitious materials in the marine environment. By coupling biofilm (culture-based methods) and biofouling (image-analysis-based method and wet-/dry-weight biomass measurement) quantification techniques, this study showed that the application of a curing compound to the concrete surface reduced the biocolonization of cementitious materials in seawater, whereas green formwork oil had the opposite effect. This study also found that certain surface conditions (faceted and patterned surface, rough surface) promote the bacterial and macroorganism colonization of cementitious materials. Among the parameters examined, surface roughness proved to be the factor that promotes biocolonization most effectively. These results could be taken up in future recommendations to enable engineers to eco-design more eco-friendly marine infrastructure and develop green-engineering projects.
ISSN:2071-1050
2071-1050
DOI:10.3390/su13052625