Toxicological evaluation of two flavors with modifying properties: 3-((4-amino-2,2-dioxido-1H-benzo[c][1,2,6]thiadiazin-5-yl)oxy)-2,2-dimethyl-N-propylpropanamide and (S)-1-(3-(((4-amino-2,2-dioxido-1H-benzo[c][1,2,6]thiadiazin-5-yl)oxy)methyl)piperidin-1-yl)-3-methylbutan-1-one

A toxicological evaluation of two structurally related flavors with modifying properties, 3-((4-amino-2,2-dioxido-1H- benzo[c][1,2,6]thiadiazin-5-yl)oxy)-2,2-dimethyl-N-propylpropanamide (S6973; CAS 1093200-92-0) and (S)-1-(3-(((4-amino-2,2-dioxido-1H-benzo[c][1,2,6]thiadiazin-5-yl)oxy)methyl)piperi...

Full description

Saved in:
Bibliographic Details
Published inFood and chemical toxicology Vol. 76; pp. 33 - 45
Main Authors Arthur, Amy J, Karanewsky, Donald S, Luksic, Mike, Goodfellow, Geoff, Daniels, Jon
Format Journal Article
LanguageEnglish
Published England 01.02.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A toxicological evaluation of two structurally related flavors with modifying properties, 3-((4-amino-2,2-dioxido-1H- benzo[c][1,2,6]thiadiazin-5-yl)oxy)-2,2-dimethyl-N-propylpropanamide (S6973; CAS 1093200-92-0) and (S)-1-(3-(((4-amino-2,2-dioxido-1H-benzo[c][1,2,6]thiadiazin-5-yl)oxy)methyl)piperidin-1-yl)-3-methylbutan-1-one (S617; CAS 1469426-64-9), was completed for the purpose of assessing their safety for use in food and beverage applications. Both compounds exhibited minimal oxidative metabolism in vitro, and in rat pharmacokinetic studies, were poorly absorbed and rapidly eliminated. Neither compound exhibited genotoxic concerns. S6973 and S617 were not found to be mutagenic or clastogenic, and did not induce micronuclei in vitro or in vivo. In subchronic oral toxicity studies in rats, the no-observed-adverse-effect-levels (NOAELs) were 20 mg/kg/day and 100 mg/kg/day (highest doses tested) for S6973 and S617, respectively, when administered as a food ad-mix for 90 consecutive days. Furthermore, S617 demonstrated a lack of maternal toxicity, as well as adverse effects on fetal morphology at the highest dose tested, providing a NOAEL of 1000 mg/kg/day for both maternal toxicity and embryo/fetal development when administered orally during gestation to pregnant rats.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0278-6915
1873-6351
DOI:10.1016/j.fct.2014.11.018