Detailed Molecular Characterisation of the Transgenic Potato Line, AppA6, Modified with the Apple (Malus domestica) Polygalacturonase Inhibiting Protein 1 (pgip1) Gene

Current safety assessment of genetically modified crops requires detailed information about the insertion of the transgene and the effect of its expression on the biochemistry and physiology of the host plant. Whilst the intended effect of the transformation can be verified through phenotypic screen...

Full description

Saved in:
Bibliographic Details
Published inPotato research Vol. 59; no. 2; pp. 129 - 147
Main Authors Matsaunyane, Lerato B. T., Oelofse, Dean, Dubery, Ian A.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.06.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Current safety assessment of genetically modified crops requires detailed information about the insertion of the transgene and the effect of its expression on the biochemistry and physiology of the host plant. Whilst the intended effect of the transformation can be verified through phenotypic screening, molecular approaches are required to observe unintended effects. We investigated the molecular details of the integration of a polygalacturonase inhibiting protein 1 gene from Malus domestica ( Mdpgip1 ), overexpressed in Solanum tuberosum (cv BP1) for enhanced resistance against Verticillium wilt. Genome walking studies of the selected AppA6 transformant revealed that the T-DNA containing the Mdpgip1 transgene under control of the CaMV 35S promoter was inserted into the genome without any non-T-DNA sequences from the pCAMBIA2300 vector. Sequence data indicate that the insertion of the Mdpgip1 transgene was in a gene-rich region of chromosome 1, adjacent to the photosystem Q B gene but without disruption of structural genes. Transcriptome-based cDNA-representational difference analysis revealed the distinctive expression of Mdpgip1 in the transgenic AppA6 line, verifying the intended effect. Protein extracts from the transgenic plants inhibited the activities of Verticillium dahliae polygalacturonases in in vitro studies, showing that the transgene is expressed to produce an active PGIP defense protein. cDNA-AFLP fingerprinting revealed genes that were differentially expressed, including genes encoding tryptophan/tyrosine permease, Ef-Tu domain and SKP1-like 1A proteins. qRT-PCR indicated that the Mdpgip1 transgene insertion resulted in increased expression in the AppA6 transgenic of the xyloglucan endotransglycosylase ( xth ) gene and an endogenous Stpgip1 gene. These unintended changes were either caused by the constitutive expression of the Mdpgip1 transgene or transformation-related somaclonal variation. The results indicate that the stable, single copy integration of the Mdpgip1 gene in the AppA6 transgenic line did not disrupt any structural genes but caused unintended effects that affected gene expression compared to the parental counterpart under the non-stressed experimental conditions investigated.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0014-3065
1871-4528
DOI:10.1007/s11540-016-9316-x