Evidence for and partial characterization of three major and three minor chromatographic forms of human neutrophil myeloperoxidase

Myeloperoxidase (MPO) is an enzyme found in the azurophil granules of neutrophils. Cation-exchange chromatography on carboxymethyl-cellulose previously has been used to demonstrate the heterogeneity of the peroxidase enzymes isolated from human neutrophils. In this study, fast protein liquid chromat...

Full description

Saved in:
Bibliographic Details
Published inArchives of biochemistry and biophysics Vol. 246; no. 2; pp. 751 - 764
Main Authors Miyasaki, Kenneth T., Wilson, Mark E., Cohen, Elias, Jones, Pamela C., Genco, Robert J.
Format Journal Article
LanguageEnglish
Published San Diego, CA Elsevier Inc 01.05.1986
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Myeloperoxidase (MPO) is an enzyme found in the azurophil granules of neutrophils. Cation-exchange chromatography on carboxymethyl-cellulose previously has been used to demonstrate the heterogeneity of the peroxidase enzymes isolated from human neutrophils. In this study, fast protein liquid chromatography (FPLC) was used to separate and purify three major (I, II, and III) and three minor (IIa, IIIa, IIIb) forms of MPO from isolated neutrophil granules. Purity was confirmed by polyacrylamide gel electrophoresis in the presence of cetyltrimethylammonium bromide (CETAB-PAGE), by crossed immunoelectrophoresis, and by spectral characteristics. All three major forms were indistinguishable by immunodiffusion against rabbit antiserum, scanning spectrophotometry, and amino acid composition. They differed in their elution from a cation exchange resin, inhibition by 3-amino-1,2,4-triazole, migration rate in CETAB-PAGE, and subunit molecular weight. Subunit molecular weight was examined using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). All three major forms appeared to consist of heavy (H), intermediate (M), and light (L) peptides. The M peptide appeared to be derived from the H subunit. All L subunits exhibited a molecular weight of 14,500. The molecular weights for the H subunits varied, and were 60,000, 59,000, and 57,000 for MPO I, II, and III, respectively. The molecular weights for the M peptides were 44,100, 43,000, and 42,000 for MPO I, II, and III, respectively. The treatment of neutrophils, granules, and extracts with protease inhibitors and sodium azide did not block the appearance of three major forms of MPO. Thus, neither protease activity nor MPO autooxidation during extraction and purification procedures is responsible for the appearance of multiple chromatographic forms of MPO derived from human neutrophils.
ISSN:0003-9861
1096-0384
DOI:10.1016/0003-9861(86)90332-2