Distributed Optimization for Graph Matching

Graph matching, or the determination of the vertex correspondences between a pair of graphs, is a crucial task in various problems in different science and engineering disciplines. This article aims to propose a distributed optimization approach for graph matching (GM) between two isomorphic graphs...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 53; no. 8; pp. 4815 - 4828
Main Authors Van Tran, Quoc, Sun, Zhiyong, D. O. Anderson, Brian, Ahn, Hyo-Sung
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Graph matching, or the determination of the vertex correspondences between a pair of graphs, is a crucial task in various problems in different science and engineering disciplines. This article aims to propose a distributed optimization approach for graph matching (GM) between two isomorphic graphs over multiagent networks. For this, we first show that for a class of asymmetric graphs, GM of two isomorphic graphs is equivalent to a convex relaxation where the set of permutation matrices is replaced by the set of pseudostochastic matrices. Then, we formulate GM as a distributed convex optimization problem with equality constraints and a set constraint, over a network of multiple agents. For arbitrary labelings of the vertices, each agent only has information about just one vertex and its neighborhood, and can exchange information with its neighbors. A projected primal-dual gradient method is developed to solve the constrained optimization problem, and globally exponential convergence of the agents' states to the optimal permutation is achieved. Finally, we illustrate the effectiveness of the algorithm through simulation examples.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2168-2267
2168-2275
DOI:10.1109/TCYB.2022.3140338