Growth and characterization of continuously graded index separate confinement heterostructure (GRIN-SCH) InGaAs-InP long wavelength strained layer quantum-well lasers by metalorganic vapor phase epitaxy
A report is presented on the growth and characterization of the first InGaAs-InP-based graded-index separate-confinement-heterostructure (GRIN-SCH) strained quantum-well lasers operating near 1.47 mu m. The structure features linearly graded InGaAsP waveguide layers for both optical and carrier conf...
Saved in:
Published in | IEEE journal of quantum electronics Vol. 26; no. 8; pp. 1323 - 1327 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.08.1990
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A report is presented on the growth and characterization of the first InGaAs-InP-based graded-index separate-confinement-heterostructure (GRIN-SCH) strained quantum-well lasers operating near 1.47 mu m. The structure features linearly graded InGaAsP waveguide layers for both optical and carrier confinement in a very narrow, strained quantum-well layers. The excellent structural quality of the active and waveguide regions has been confirmed by transmission electron microscopy (TEM) and secondary ion mass spectroscopy (SIMS) analysis results. Strained quantum-well lasers with well widths as narrow as 5-6 nm were fabricated with threshold current densities as low as 750 A/cm/sup 2/. Buried-heterostructure lasers based on strained quantum-well active lasers exhibit threshold currents as low as 10-15 mA with quantum efficiency of 70-80%. With antireflection coating on one side of the sample, the laser shows threshold current of 35 mA with highest output power of 160 mW.< > |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0018-9197 1558-1713 |
DOI: | 10.1109/3.59676 |