Development of a read-across-derived classification model for the predictions of mutagenicity data and its comparison with traditional QSAR models and expert systems

Mutagenicity is considered an important endpoint from the regulatory, environmental and medical points of view. Due to the wide number of compounds that may be of concern and the enormous expenses (in terms of time, money, and animals) associated with rodent mutagenicity bioassays, this endpoint is...

Full description

Saved in:
Bibliographic Details
Published inToxicology (Amsterdam) Vol. 500; p. 153676
Main Authors Pandey, Sapna Kumari, Roy, Kunal
Format Journal Article
LanguageEnglish
Published Ireland 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Mutagenicity is considered an important endpoint from the regulatory, environmental and medical points of view. Due to the wide number of compounds that may be of concern and the enormous expenses (in terms of time, money, and animals) associated with rodent mutagenicity bioassays, this endpoint is a major target for the development of alternative approaches for screening and prediction. The majority of old-aged expert systems and quantitative structure-activity relationship (QSAR) models may show reduced performance over time for their application on newer chemical candidates; thus, researchers constantly try to improve the modeling strategies. In our report, we initially performed traditional classification-based linear discriminant analysis (LDA) QSAR modeling using the benchmark Ames dataset of diverse chemicals (6512 compounds) to recognize the relationship between the molecules and their potential mutagenic behavior. The classical LDA QSAR model is developed from a selected set of 2D descriptors. The LDA QSAR model was developed by using a total of 31 descriptors identified from the analysis of the most discriminating features. Additionally, we have used similarity-derived features obtained from the read-across (RA) to develop an RA-based QSAR model. The developed RA-based LDA QSAR model has better predictivity, transferability, and interpretability compared to the LDA QSAR model, and it uses a very small number of descriptors compared to the classical QSAR model. Different machine learning (ML) models were also developed using the descriptors appearing in the read-across-based LDA QSAR model for comparative studies. We have checked the prediction quality of 216 true external set compounds using the novel similarity-derived RA model. The performance of the OECD toolbox is also compared with the RA-derived LDA QSAR model for a true external set. The current study aimed to explore the significance of the read-across-based algorithm and its application to the most current experimental mutagenicity data to complement already available expert systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0300-483X
1879-3185
DOI:10.1016/j.tox.2023.153676