Biochemical factors limiting myocardial energy in a chicken genotype selected for rapid growth

Broiler chickens (Gallus gallus) genetically selected for rapid growth are inherently predisposed to heart failure. In order to understand the biochemical mechanisms associated with the deterioration of heart function and development of congestive heart failure (CHF) in fast-growing chickens, this s...

Full description

Saved in:
Bibliographic Details
Published inComparative biochemistry and physiology. Part A, Molecular & integrative physiology Vol. 149; no. 1; pp. 36 - 43
Main Authors Nain, S, Ling, B, Alcorn, J, Wojnarowicz, C M, Laarveld, B, Olkowski, A A
Format Journal Article
LanguageEnglish
Published United States 01.01.2008
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Broiler chickens (Gallus gallus) genetically selected for rapid growth are inherently predisposed to heart failure. In order to understand the biochemical mechanisms associated with the deterioration of heart function and development of congestive heart failure (CHF) in fast-growing chickens, this study examined several factors critical for myocardial energy metabolism. Measured variables included cardiac energy substrates [creatine phosphate (CrP), adenosine triphosphate (ATP), l-carnitine], activity of selected cytosolic enzymes [creatine kinase (CK; EC 2.7.3.2), lactate dehydrogenase (LDH; EC 1.1.1.27)] and mitochondrial enzymes [pyruvate dehydrogenase (PDH; EC 1.2.4.1), alpha-ketoglutarate dehydrogenase (alpha-KGDH; EC 1.2.4.2)]. The CK activities were higher in fast-growing and CHF broilers as compared to slow-growing broilers (p<0.05). Cardiac LDH and alpha-KGDH activities were not changed (p>0.05), whereas PDH activity was highest (p<0.05) in broilers with CHF. Deterioration of heart function is correlated with lowered cardiac ATP, CrP, and l-carnitine levels (all p<0.05). Depletion of high energy phosphate substrates, ATP and CrP, is evident in fast-growing chickens and those that developed CHF. Increased activity of CK suggests that cardiac energy management in fast-growing broilers and those with CHF largely depends on contribution of this pathway to regeneration of ATP from CrP. In this scenario, inadequate level of CrP is a direct cause of ATP insufficiency, whereas low cardiac l-carnitine, because of its role in fatty acid transport, is most likely an important factor contributing to shortage of key substrate required for synthesis of cardiac ATP. The insufficiencies in cardiac energy substrate synthesis provide metabolic basis of myocardial dysfunction in chickens predisposed to heart failure.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1095-6433
1531-4332
DOI:10.1016/j.cbpa.2007.10.001