Spectral resolution of fluxional organometallics. The observation and FTIR characterization of all-terminal [Rh4(CO)12]

In situ FTIR spectroscopy at 1 cm(-1) resolution was conducted on n-hexane solutions of the bridged [Rh4(CO)9(mu-CO)3] in the interval T= 268-288 K and P(T)= 0.1-7.0 MPa using either helium or carbon monoxide as dissolved gas. Analysis of the spectral data sets was conducted using band-target entrop...

Full description

Saved in:
Bibliographic Details
Published inDalton transactions : an international journal of inorganic chemistry no. 11; p. 1957
Main Authors Allian, Ayman D, Garland, Marc
Format Journal Article
LanguageEnglish
Published England 07.06.2005
Online AccessGet more information

Cover

Loading…
More Information
Summary:In situ FTIR spectroscopy at 1 cm(-1) resolution was conducted on n-hexane solutions of the bridged [Rh4(CO)9(mu-CO)3] in the interval T= 268-288 K and P(T)= 0.1-7.0 MPa using either helium or carbon monoxide as dissolved gas. Analysis of the spectral data sets was conducted using band-target entropy minimization (BTEM), in order to recover the pure component spectra. A new spectral pattern was recovered with terminal vibrations at 2075, 2069.8, 2044.6 and 2042 cm(-1). The new spectrum is consistent with an all-terminal [Rh4(CO)12] species with a C(3v) anticubeoctahedron structure where 2 different [Rh(CO)3] moieties exist, although the presence of some Td structure can not be entirely excluded. The equilibrium between all-terminal [Rh4(CO)12] and the bridged [Rh(4)(CO)9(mu-CO)3] was determined in the presence of both helium and CO. The equilibrium constant K(eq)=[Rh4(CO)12]/[Rh4(CO)9(mu-CO)3] at 275 K was ca. 0.011 and the determined equilibrium parameters were Delta(r)G= 12.63 +/- 4.8 kJ mol(-1), Delta(r)H=-21.45 +/- 2.3 kJ mol(-1) and Delta(r)S=-114.3 +/- 8.35 J mol(-1) K(-1). The free energy indicates a very small difference between the bridged and terminal geometry, and the lower entropy is consistent with a higher symmetry. This finding helps to address a long-standing issue concerning the existence of various [M4(CO)12] symmetries. In a more general context, the present study illustrates the considerable utility of quantitative infrared spectroscopy (occurring on a fast vibrational timescale) combined with sophisticated deconvolution techniques in order to resolve systems which have been demonstrated to be fluxional on the NMR timescale.
ISSN:1477-9226
DOI:10.1039/b500044k