A spectral version of Mantel's theorem
A classic result in extremal graph theory, known as Mantel's theorem, implies that every non-bipartite graph of order n with size m>⌊n2/4⌋ contains a triangle. Recently, by majority technique, Lin, Ning and Wu obtained a spectral version as follows: every non-bipartite graph G of size m with...
Saved in:
Published in | Discrete mathematics Vol. 345; no. 1; p. 112630 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A classic result in extremal graph theory, known as Mantel's theorem, implies that every non-bipartite graph of order n with size m>⌊n2/4⌋ contains a triangle. Recently, by majority technique, Lin, Ning and Wu obtained a spectral version as follows: every non-bipartite graph G of size m with spectral radius ρ(G)≥m−1 contains a triangle unless G≅C5. In this paper, by using completely different techniques we show that every non-bipartite graph G of size m with ρ(G)≥ρ⁎(m) contains a triangle unless G≅SK2,m−12, where ρ⁎(m) is the largest root of x3−x2−(m−2)x+(m−3)=0 and SK2,m−12 is obtained by subdividing an edge of K2,m−12. This result implies both Mantel's theorem and Lin, Ning and Wu's result. Moreover, following Nikiforov's result, we also prove that every non-bipartite graph G with m≥26 and ρ(G)≥ρ(K1,m−1+e) contains a quadrilateral unless G≅K1,m−1+e. |
---|---|
AbstractList | A classic result in extremal graph theory, known as Mantel's theorem, implies that every non-bipartite graph of order n with size m>⌊n2/4⌋ contains a triangle. Recently, by majority technique, Lin, Ning and Wu obtained a spectral version as follows: every non-bipartite graph G of size m with spectral radius ρ(G)≥m−1 contains a triangle unless G≅C5. In this paper, by using completely different techniques we show that every non-bipartite graph G of size m with ρ(G)≥ρ⁎(m) contains a triangle unless G≅SK2,m−12, where ρ⁎(m) is the largest root of x3−x2−(m−2)x+(m−3)=0 and SK2,m−12 is obtained by subdividing an edge of K2,m−12. This result implies both Mantel's theorem and Lin, Ning and Wu's result. Moreover, following Nikiforov's result, we also prove that every non-bipartite graph G with m≥26 and ρ(G)≥ρ(K1,m−1+e) contains a quadrilateral unless G≅K1,m−1+e. |
ArticleNumber | 112630 |
Author | Zhai, Mingqing Shu, Jinlong |
Author_xml | – sequence: 1 givenname: Mingqing surname: Zhai fullname: Zhai, Mingqing email: mqzhai@chzu.edu.cn organization: School of Mathematics and Finance, Chuzhou University, Chuzhou, Anhui, 239012, China – sequence: 2 givenname: Jinlong surname: Shu fullname: Shu, Jinlong email: jlshu@math.ecnu.edu.cn organization: School of Data Science and Engineering, East China Normal University, Shanghai 200237, China |
BookMark | eNp9kDtrwzAUhUVJoUnaP9DJUzvZvVdyZAe6hNAXpHRpIZvQ44oqOHaQTKD_vg7u1CHT4Q7f5XxnxiZt1xJjtwgFAsqHXeFCsgUHjgUilwIu2BTriueyxu2ETQGQ50IutldsltIOhluKesruVlk6kO2jbrIjxRS6Nut89q7bnpr7lPXf1EXaX7NLr5tEN385Z1_PT5_r13zz8fK2Xm1yKwD63C9LY3UJTpMwvJLSLGVtK8GXHmXJPRcGvQSoHKIrCYFrQyUY473TC41izurxr41dSpG8sqHX_dBqaBgahaBOvmqnTr7q5KtG3wHl_9BDDHsdf85DjyNEg9QxUFTJBmotuRCHVZTrwjn8F-X3b-4 |
CitedBy_id | crossref_primary_10_1016_j_disc_2023_113440 crossref_primary_10_1016_j_disc_2023_113781 crossref_primary_10_1016_j_laa_2023_01_004 crossref_primary_10_1016_j_laa_2024_12_008 crossref_primary_10_1016_j_disc_2023_113591 crossref_primary_10_1016_j_disc_2023_113680 crossref_primary_10_1016_j_disc_2024_114391 crossref_primary_10_1016_j_dam_2023_06_048 crossref_primary_10_1016_j_disc_2024_114151 crossref_primary_10_1016_j_ejc_2023_103685 crossref_primary_10_1016_j_ejc_2025_104142 crossref_primary_10_1016_j_laa_2023_05_008 crossref_primary_10_1007_s00373_024_02832_2 crossref_primary_10_1016_j_laa_2024_02_026 crossref_primary_10_1016_j_laa_2023_02_019 crossref_primary_10_1137_22M1507814 crossref_primary_10_1080_03081087_2024_2329197 crossref_primary_10_1016_j_disc_2022_112973 crossref_primary_10_1016_j_ejc_2024_103966 crossref_primary_10_1007_s10801_023_01289_5 crossref_primary_10_1007_s10878_023_01081_y |
Cites_doi | 10.1016/j.laa.2006.02.003 10.1016/j.jctb.2006.12.002 10.1017/S0963548301004928 10.4064/cm-3-1-50-57 10.1016/0095-8956(83)90018-7 10.1017/S0963548320000462 10.1006/jctb.1996.0052 10.1016/j.laa.2009.01.002 10.1016/j.laa.2020.04.024 10.1007/BF02020254 10.1007/BF02941924 10.1016/j.laa.2004.08.025 10.1016/0166-218X(83)90015-X |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.disc.2021.112630 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1872-681X |
ExternalDocumentID | 10_1016_j_disc_2021_112630 S0012365X21003435 |
GrantInformation_xml | – fundername: Anhui Provincial Natural Science Foundation grantid: 2108085MA13 funderid: https://doi.org/10.13039/501100003995 – fundername: National Natural Science Foundation of China grantid: 12171066; 11971445 funderid: https://doi.org/10.13039/501100001809 |
GroupedDBID | --K --M -DZ -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 41~ 457 4G. 5GY 5VS 6I. 6OB 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABTAH ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEKER AENEX AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE IXB J1W KOM M26 M41 MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K TN5 UPT VH1 WH7 WUQ XJT XOL XPP ZCG ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-f94bca40dae3b2766b968c7329f1642f23b1f6007d11d4e102abe40bbffda5a13 |
IEDL.DBID | .~1 |
ISSN | 0012-365X |
IngestDate | Tue Jul 01 04:11:13 EDT 2025 Thu Apr 24 22:54:43 EDT 2025 Fri Feb 23 02:43:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Triangle Quadrilateral Mantel's theorem Spectral radius |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-f94bca40dae3b2766b968c7329f1642f23b1f6007d11d4e102abe40bbffda5a13 |
ParticipantIDs | crossref_citationtrail_10_1016_j_disc_2021_112630 crossref_primary_10_1016_j_disc_2021_112630 elsevier_sciencedirect_doi_10_1016_j_disc_2021_112630 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationTitle | Discrete mathematics |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bollobás, Nikiforov (br0010) 2007; 97 Nikiforov (br0140) 2002; 11 Nikiforov (br0130) 2009; 430 Cvetković, Rowlinson, Simić (br0030) 2010 Erdős, Rényi, Sós (br0050) 1966; 1 Füredi (br0070) 1996; 68 Wu, Xiao, Hong (br0190) 2005; 395 Mantel (br0120) 1907; 10 Wang, Guo (br0180) 2020; 601 Lin, Ning, Wu (br0110) 2021; 30 Hoffman, Smith (br0090) 1975 Collatz, Sinogowitz (br0020) 1957; 21 Edwards, Elphick (br0040) 1983; 5 Füredi (br0060) 1983; 34 Füredi, Simonovits (br0080) 2013; vol. 25 Nikiforov (br0150) 2006; 418 Nosal (br0160) 1970 Reiman (br0170) 1958; 9 Kővári, Sós, Turán (br0100) 1959; 3 Collatz (10.1016/j.disc.2021.112630_br0020) 1957; 21 Füredi (10.1016/j.disc.2021.112630_br0080) 2013; vol. 25 Nikiforov (10.1016/j.disc.2021.112630_br0150) 2006; 418 Wu (10.1016/j.disc.2021.112630_br0190) 2005; 395 Füredi (10.1016/j.disc.2021.112630_br0070) 1996; 68 Nikiforov (10.1016/j.disc.2021.112630_br0140) 2002; 11 Wang (10.1016/j.disc.2021.112630_br0180) 2020; 601 Erdős (10.1016/j.disc.2021.112630_br0050) 1966; 1 Kővári (10.1016/j.disc.2021.112630_br0100) 1959; 3 Reiman (10.1016/j.disc.2021.112630_br0170) 1958; 9 Lin (10.1016/j.disc.2021.112630_br0110) 2021; 30 Mantel (10.1016/j.disc.2021.112630_br0120) 1907; 10 Nosal (10.1016/j.disc.2021.112630_br0160) 1970 Füredi (10.1016/j.disc.2021.112630_br0060) 1983; 34 Hoffman (10.1016/j.disc.2021.112630_br0090) 1975 Edwards (10.1016/j.disc.2021.112630_br0040) 1983; 5 Nikiforov (10.1016/j.disc.2021.112630_br0130) 2009; 430 Cvetković (10.1016/j.disc.2021.112630_br0030) 2010 Bollobás (10.1016/j.disc.2021.112630_br0010) 2007; 97 |
References_xml | – year: 2010 ident: br0030 article-title: An Introduction to the Theory of Graph Spectra – volume: 395 start-page: 343 year: 2005 end-page: 349 ident: br0190 article-title: The spectral radius of trees on publication-title: Linear Algebra Appl. – volume: 30 start-page: 258 year: 2021 end-page: 270 ident: br0110 article-title: Eigenvalues and triangles in graphs publication-title: Comb. Probab. Comput. – volume: 10 start-page: 60 year: 1907 end-page: 61 ident: br0120 article-title: Problem 28, soln. by H. Gouventak, W. Mantel, J. Teixeira de Mattes, F. Schuh and W.A. Wythoff publication-title: Wiskundige Opgaven – volume: 418 start-page: 257 year: 2006 end-page: 268 ident: br0150 article-title: Walks and the spectral radius of graphs publication-title: Linear Algebra Appl. – volume: 34 start-page: 187 year: 1983 end-page: 190 ident: br0060 article-title: Graphs without quadrilaterals publication-title: J. Comb. Theory, Ser. B – volume: 601 start-page: 101 year: 2020 end-page: 112 ident: br0180 article-title: Some upper bounds on the spectral radius of a graph publication-title: Linear Algebra Appl. – volume: 97 start-page: 859 year: 2007 end-page: 865 ident: br0010 article-title: Cliques and the spectral radius publication-title: J. Comb. Theory, Ser. B – volume: 21 start-page: 63 year: 1957 end-page: 77 ident: br0020 article-title: Spektren endlicher Grafen publication-title: Abh. Math. Semin. Univ. Hamb. – volume: 1 start-page: 215 year: 1966 end-page: 235 ident: br0050 article-title: On a problem of graph theory publication-title: Studia Sci. Math. Hung. – volume: 11 start-page: 179 year: 2002 end-page: 189 ident: br0140 article-title: Some inequalities for the largest eigenvalue of a graph publication-title: Comb. Probab. Comput. – year: 1970 ident: br0160 article-title: Eigenvalues of Graphs – volume: 5 start-page: 51 year: 1983 end-page: 64 ident: br0040 article-title: Lower bounds for the clique and the chromatic number of a graph publication-title: Discrete Appl. Math. – volume: 3 start-page: 50 year: 1959 end-page: 57 ident: br0100 article-title: On a problem of K. Zarankiewicz publication-title: Colloq. Math. – start-page: 273 year: 1975 end-page: 281 ident: br0090 article-title: On the spectral radii of topologically equivalent graphs publication-title: Recent Advances in Graph Theory – volume: 68 start-page: 1 year: 1996 end-page: 6 ident: br0070 article-title: On the number of edges of quadrilateral-free graphs publication-title: J. Comb. Theory, Ser. B – volume: vol. 25 start-page: 167 year: 2013 end-page: 262 ident: br0080 article-title: The history of degenerate (bipartite) extremal graph problems publication-title: The Erdős Centennial – volume: 9 start-page: 269 year: 1958 end-page: 273 ident: br0170 article-title: Über ein problem von K. Zarankiewicz publication-title: Acta Math. Acad. Sci. Hung. – volume: 430 start-page: 2898 year: 2009 end-page: 2905 ident: br0130 article-title: The maximum spectral radius of publication-title: Linear Algebra Appl. – year: 1970 ident: 10.1016/j.disc.2021.112630_br0160 – volume: 418 start-page: 257 year: 2006 ident: 10.1016/j.disc.2021.112630_br0150 article-title: Walks and the spectral radius of graphs publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2006.02.003 – start-page: 273 year: 1975 ident: 10.1016/j.disc.2021.112630_br0090 article-title: On the spectral radii of topologically equivalent graphs – volume: 97 start-page: 859 year: 2007 ident: 10.1016/j.disc.2021.112630_br0010 article-title: Cliques and the spectral radius publication-title: J. Comb. Theory, Ser. B doi: 10.1016/j.jctb.2006.12.002 – volume: 11 start-page: 179 year: 2002 ident: 10.1016/j.disc.2021.112630_br0140 article-title: Some inequalities for the largest eigenvalue of a graph publication-title: Comb. Probab. Comput. doi: 10.1017/S0963548301004928 – year: 2010 ident: 10.1016/j.disc.2021.112630_br0030 – volume: 3 start-page: 50 year: 1959 ident: 10.1016/j.disc.2021.112630_br0100 article-title: On a problem of K. Zarankiewicz publication-title: Colloq. Math. doi: 10.4064/cm-3-1-50-57 – volume: 34 start-page: 187 year: 1983 ident: 10.1016/j.disc.2021.112630_br0060 article-title: Graphs without quadrilaterals publication-title: J. Comb. Theory, Ser. B doi: 10.1016/0095-8956(83)90018-7 – volume: 30 start-page: 258 year: 2021 ident: 10.1016/j.disc.2021.112630_br0110 article-title: Eigenvalues and triangles in graphs publication-title: Comb. Probab. Comput. doi: 10.1017/S0963548320000462 – volume: 10 start-page: 60 year: 1907 ident: 10.1016/j.disc.2021.112630_br0120 article-title: Problem 28, soln. by H. Gouventak, W. Mantel, J. Teixeira de Mattes, F. Schuh and W.A. Wythoff publication-title: Wiskundige Opgaven – volume: 68 start-page: 1 year: 1996 ident: 10.1016/j.disc.2021.112630_br0070 article-title: On the number of edges of quadrilateral-free graphs publication-title: J. Comb. Theory, Ser. B doi: 10.1006/jctb.1996.0052 – volume: vol. 25 start-page: 167 year: 2013 ident: 10.1016/j.disc.2021.112630_br0080 article-title: The history of degenerate (bipartite) extremal graph problems – volume: 430 start-page: 2898 year: 2009 ident: 10.1016/j.disc.2021.112630_br0130 article-title: The maximum spectral radius of C4-free graphs of given order and size publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2009.01.002 – volume: 601 start-page: 101 year: 2020 ident: 10.1016/j.disc.2021.112630_br0180 article-title: Some upper bounds on the spectral radius of a graph publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2020.04.024 – volume: 9 start-page: 269 year: 1958 ident: 10.1016/j.disc.2021.112630_br0170 article-title: Über ein problem von K. Zarankiewicz publication-title: Acta Math. Acad. Sci. Hung. doi: 10.1007/BF02020254 – volume: 21 start-page: 63 year: 1957 ident: 10.1016/j.disc.2021.112630_br0020 article-title: Spektren endlicher Grafen publication-title: Abh. Math. Semin. Univ. Hamb. doi: 10.1007/BF02941924 – volume: 395 start-page: 343 year: 2005 ident: 10.1016/j.disc.2021.112630_br0190 article-title: The spectral radius of trees on k pendant vertices publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2004.08.025 – volume: 5 start-page: 51 year: 1983 ident: 10.1016/j.disc.2021.112630_br0040 article-title: Lower bounds for the clique and the chromatic number of a graph publication-title: Discrete Appl. Math. doi: 10.1016/0166-218X(83)90015-X – volume: 1 start-page: 215 year: 1966 ident: 10.1016/j.disc.2021.112630_br0050 article-title: On a problem of graph theory publication-title: Studia Sci. Math. Hung. |
SSID | ssj0001638 |
Score | 2.4479396 |
Snippet | A classic result in extremal graph theory, known as Mantel's theorem, implies that every non-bipartite graph of order n with size m>⌊n2/4⌋ contains a triangle.... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 112630 |
SubjectTerms | Mantel's theorem Quadrilateral Spectral radius Triangle |
Title | A spectral version of Mantel's theorem |
URI | https://dx.doi.org/10.1016/j.disc.2021.112630 |
Volume | 345 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KvehBfGJ9lBxEDxKbfSRpjqVYqtKeLPQW9gmV2pa2evS3u5NNqoL04HWZgeTbZR7LfN8CXFtBeKza1vUmbRlyq1kotIlDl6qlpZoxkSA5eTBM-iP-NI7HNehWXBgcqyxjv4_pRbQuV1olmq3FZIIcX1QOcc0WQZEVhkRzzlM85fef32MeWG_4aExDtC6JM37GC5mvrkekpGDS4CT0X8npR8LpHcB-WSkGHf8xh1AzsyPYG2xkVlfHcNMJCqbk0tl9-IuvYG6DAaI1vV0FnqX4dgKj3sNLtx-WDx-EikXROrQZl0rwSAvDJE2TRGZJW6WMZtZ1N9RSJolFYXlNiObG1QhCGh5Jaa0WsSDsFOqz-cycQcCEjhKlpHG-3MZKUI0a867qkVyxLGoAqf44V6UqOD5OMc2r8a_XHFHKEaXco9SAu43PwmtibLWOKyDzXzubu6C9xe_8n34XsEuRolBck1xCfb18N1eucFjLZnEymrDTeXzuD78AyP_Afg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na8JAEB2sHtoeSj-p_cyhtIcSTHY30RylVGI1nhS8LfsJFquitr-_O0mUFoqHXsMOJC_Lm5ll3luABytCFqmWdb1JS_rMauoLbSLfpWppiaZUxChOzgZxOmJv42hcgZeNFgbHKkvuLzg9Z-vySaNEs7GYTFDji84hrtkK0WSFRntQQ3eqqAq1dreXDraEjCVHQcjEx4BSO1OMeaH41bWJJMzFNDgM_Vd--pFzOsdwVBaLXrt4nxOomNkpHGZbp9XVGTy2vVwsuXTrvoqzL29uvQwBmz6tvEKo-HEOo87r8CX1y7sPfEWDYO3bhEklWKCFoZI041gmcUs1KUmsa3CIJVSGFr3ldRhqZlyZIKRhgZTWahGJkF5AdTafmUvwqNBBrJQ0LpbZSAmi0WbeFT6SKZoEdQg3X8xVaQyO91NM-WYC7J0jShxR4gVKdXjexiwKW4ydq6MNkPzXz-WOt3fEXf0z7h7202HW5_3uoHcNBwQVC_mpyQ1U18tPc-vqiLW8K_fJN4CQwy8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+spectral+version+of+Mantel%27s+theorem&rft.jtitle=Discrete+mathematics&rft.au=Zhai%2C+Mingqing&rft.au=Shu%2C+Jinlong&rft.date=2022-01-01&rft.issn=0012-365X&rft.volume=345&rft.issue=1&rft.spage=112630&rft_id=info:doi/10.1016%2Fj.disc.2021.112630&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_disc_2021_112630 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-365X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-365X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-365X&client=summon |