A spectral version of Mantel's theorem

A classic result in extremal graph theory, known as Mantel's theorem, implies that every non-bipartite graph of order n with size m>⌊n2/4⌋ contains a triangle. Recently, by majority technique, Lin, Ning and Wu obtained a spectral version as follows: every non-bipartite graph G of size m with...

Full description

Saved in:
Bibliographic Details
Published inDiscrete mathematics Vol. 345; no. 1; p. 112630
Main Authors Zhai, Mingqing, Shu, Jinlong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A classic result in extremal graph theory, known as Mantel's theorem, implies that every non-bipartite graph of order n with size m>⌊n2/4⌋ contains a triangle. Recently, by majority technique, Lin, Ning and Wu obtained a spectral version as follows: every non-bipartite graph G of size m with spectral radius ρ(G)≥m−1 contains a triangle unless G≅C5. In this paper, by using completely different techniques we show that every non-bipartite graph G of size m with ρ(G)≥ρ⁎(m) contains a triangle unless G≅SK2,m−12, where ρ⁎(m) is the largest root of x3−x2−(m−2)x+(m−3)=0 and SK2,m−12 is obtained by subdividing an edge of K2,m−12. This result implies both Mantel's theorem and Lin, Ning and Wu's result. Moreover, following Nikiforov's result, we also prove that every non-bipartite graph G with m≥26 and ρ(G)≥ρ(K1,m−1+e) contains a quadrilateral unless G≅K1,m−1+e.
AbstractList A classic result in extremal graph theory, known as Mantel's theorem, implies that every non-bipartite graph of order n with size m>⌊n2/4⌋ contains a triangle. Recently, by majority technique, Lin, Ning and Wu obtained a spectral version as follows: every non-bipartite graph G of size m with spectral radius ρ(G)≥m−1 contains a triangle unless G≅C5. In this paper, by using completely different techniques we show that every non-bipartite graph G of size m with ρ(G)≥ρ⁎(m) contains a triangle unless G≅SK2,m−12, where ρ⁎(m) is the largest root of x3−x2−(m−2)x+(m−3)=0 and SK2,m−12 is obtained by subdividing an edge of K2,m−12. This result implies both Mantel's theorem and Lin, Ning and Wu's result. Moreover, following Nikiforov's result, we also prove that every non-bipartite graph G with m≥26 and ρ(G)≥ρ(K1,m−1+e) contains a quadrilateral unless G≅K1,m−1+e.
ArticleNumber 112630
Author Zhai, Mingqing
Shu, Jinlong
Author_xml – sequence: 1
  givenname: Mingqing
  surname: Zhai
  fullname: Zhai, Mingqing
  email: mqzhai@chzu.edu.cn
  organization: School of Mathematics and Finance, Chuzhou University, Chuzhou, Anhui, 239012, China
– sequence: 2
  givenname: Jinlong
  surname: Shu
  fullname: Shu, Jinlong
  email: jlshu@math.ecnu.edu.cn
  organization: School of Data Science and Engineering, East China Normal University, Shanghai 200237, China
BookMark eNp9kDtrwzAUhUVJoUnaP9DJUzvZvVdyZAe6hNAXpHRpIZvQ44oqOHaQTKD_vg7u1CHT4Q7f5XxnxiZt1xJjtwgFAsqHXeFCsgUHjgUilwIu2BTriueyxu2ETQGQ50IutldsltIOhluKesruVlk6kO2jbrIjxRS6Nut89q7bnpr7lPXf1EXaX7NLr5tEN385Z1_PT5_r13zz8fK2Xm1yKwD63C9LY3UJTpMwvJLSLGVtK8GXHmXJPRcGvQSoHKIrCYFrQyUY473TC41izurxr41dSpG8sqHX_dBqaBgahaBOvmqnTr7q5KtG3wHl_9BDDHsdf85DjyNEg9QxUFTJBmotuRCHVZTrwjn8F-X3b-4
CitedBy_id crossref_primary_10_1016_j_disc_2023_113440
crossref_primary_10_1016_j_disc_2023_113781
crossref_primary_10_1016_j_laa_2023_01_004
crossref_primary_10_1016_j_laa_2024_12_008
crossref_primary_10_1016_j_disc_2023_113591
crossref_primary_10_1016_j_disc_2023_113680
crossref_primary_10_1016_j_disc_2024_114391
crossref_primary_10_1016_j_dam_2023_06_048
crossref_primary_10_1016_j_disc_2024_114151
crossref_primary_10_1016_j_ejc_2023_103685
crossref_primary_10_1016_j_ejc_2025_104142
crossref_primary_10_1016_j_laa_2023_05_008
crossref_primary_10_1007_s00373_024_02832_2
crossref_primary_10_1016_j_laa_2024_02_026
crossref_primary_10_1016_j_laa_2023_02_019
crossref_primary_10_1137_22M1507814
crossref_primary_10_1080_03081087_2024_2329197
crossref_primary_10_1016_j_disc_2022_112973
crossref_primary_10_1016_j_ejc_2024_103966
crossref_primary_10_1007_s10801_023_01289_5
crossref_primary_10_1007_s10878_023_01081_y
Cites_doi 10.1016/j.laa.2006.02.003
10.1016/j.jctb.2006.12.002
10.1017/S0963548301004928
10.4064/cm-3-1-50-57
10.1016/0095-8956(83)90018-7
10.1017/S0963548320000462
10.1006/jctb.1996.0052
10.1016/j.laa.2009.01.002
10.1016/j.laa.2020.04.024
10.1007/BF02020254
10.1007/BF02941924
10.1016/j.laa.2004.08.025
10.1016/0166-218X(83)90015-X
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.disc.2021.112630
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-681X
ExternalDocumentID 10_1016_j_disc_2021_112630
S0012365X21003435
GrantInformation_xml – fundername: Anhui Provincial Natural Science Foundation
  grantid: 2108085MA13
  funderid: https://doi.org/10.13039/501100003995
– fundername: National Natural Science Foundation of China
  grantid: 12171066; 11971445
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID --K
--M
-DZ
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
41~
457
4G.
5GY
5VS
6I.
6OB
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
M26
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
VH1
WH7
WUQ
XJT
XOL
XPP
ZCG
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-f94bca40dae3b2766b968c7329f1642f23b1f6007d11d4e102abe40bbffda5a13
IEDL.DBID .~1
ISSN 0012-365X
IngestDate Tue Jul 01 04:11:13 EDT 2025
Thu Apr 24 22:54:43 EDT 2025
Fri Feb 23 02:43:34 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Triangle
Quadrilateral
Mantel's theorem
Spectral radius
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-f94bca40dae3b2766b968c7329f1642f23b1f6007d11d4e102abe40bbffda5a13
ParticipantIDs crossref_citationtrail_10_1016_j_disc_2021_112630
crossref_primary_10_1016_j_disc_2021_112630
elsevier_sciencedirect_doi_10_1016_j_disc_2021_112630
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationTitle Discrete mathematics
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bollobás, Nikiforov (br0010) 2007; 97
Nikiforov (br0140) 2002; 11
Nikiforov (br0130) 2009; 430
Cvetković, Rowlinson, Simić (br0030) 2010
Erdős, Rényi, Sós (br0050) 1966; 1
Füredi (br0070) 1996; 68
Wu, Xiao, Hong (br0190) 2005; 395
Mantel (br0120) 1907; 10
Wang, Guo (br0180) 2020; 601
Lin, Ning, Wu (br0110) 2021; 30
Hoffman, Smith (br0090) 1975
Collatz, Sinogowitz (br0020) 1957; 21
Edwards, Elphick (br0040) 1983; 5
Füredi (br0060) 1983; 34
Füredi, Simonovits (br0080) 2013; vol. 25
Nikiforov (br0150) 2006; 418
Nosal (br0160) 1970
Reiman (br0170) 1958; 9
Kővári, Sós, Turán (br0100) 1959; 3
Collatz (10.1016/j.disc.2021.112630_br0020) 1957; 21
Füredi (10.1016/j.disc.2021.112630_br0080) 2013; vol. 25
Nikiforov (10.1016/j.disc.2021.112630_br0150) 2006; 418
Wu (10.1016/j.disc.2021.112630_br0190) 2005; 395
Füredi (10.1016/j.disc.2021.112630_br0070) 1996; 68
Nikiforov (10.1016/j.disc.2021.112630_br0140) 2002; 11
Wang (10.1016/j.disc.2021.112630_br0180) 2020; 601
Erdős (10.1016/j.disc.2021.112630_br0050) 1966; 1
Kővári (10.1016/j.disc.2021.112630_br0100) 1959; 3
Reiman (10.1016/j.disc.2021.112630_br0170) 1958; 9
Lin (10.1016/j.disc.2021.112630_br0110) 2021; 30
Mantel (10.1016/j.disc.2021.112630_br0120) 1907; 10
Nosal (10.1016/j.disc.2021.112630_br0160) 1970
Füredi (10.1016/j.disc.2021.112630_br0060) 1983; 34
Hoffman (10.1016/j.disc.2021.112630_br0090) 1975
Edwards (10.1016/j.disc.2021.112630_br0040) 1983; 5
Nikiforov (10.1016/j.disc.2021.112630_br0130) 2009; 430
Cvetković (10.1016/j.disc.2021.112630_br0030) 2010
Bollobás (10.1016/j.disc.2021.112630_br0010) 2007; 97
References_xml – year: 2010
  ident: br0030
  article-title: An Introduction to the Theory of Graph Spectra
– volume: 395
  start-page: 343
  year: 2005
  end-page: 349
  ident: br0190
  article-title: The spectral radius of trees on
  publication-title: Linear Algebra Appl.
– volume: 30
  start-page: 258
  year: 2021
  end-page: 270
  ident: br0110
  article-title: Eigenvalues and triangles in graphs
  publication-title: Comb. Probab. Comput.
– volume: 10
  start-page: 60
  year: 1907
  end-page: 61
  ident: br0120
  article-title: Problem 28, soln. by H. Gouventak, W. Mantel, J. Teixeira de Mattes, F. Schuh and W.A. Wythoff
  publication-title: Wiskundige Opgaven
– volume: 418
  start-page: 257
  year: 2006
  end-page: 268
  ident: br0150
  article-title: Walks and the spectral radius of graphs
  publication-title: Linear Algebra Appl.
– volume: 34
  start-page: 187
  year: 1983
  end-page: 190
  ident: br0060
  article-title: Graphs without quadrilaterals
  publication-title: J. Comb. Theory, Ser. B
– volume: 601
  start-page: 101
  year: 2020
  end-page: 112
  ident: br0180
  article-title: Some upper bounds on the spectral radius of a graph
  publication-title: Linear Algebra Appl.
– volume: 97
  start-page: 859
  year: 2007
  end-page: 865
  ident: br0010
  article-title: Cliques and the spectral radius
  publication-title: J. Comb. Theory, Ser. B
– volume: 21
  start-page: 63
  year: 1957
  end-page: 77
  ident: br0020
  article-title: Spektren endlicher Grafen
  publication-title: Abh. Math. Semin. Univ. Hamb.
– volume: 1
  start-page: 215
  year: 1966
  end-page: 235
  ident: br0050
  article-title: On a problem of graph theory
  publication-title: Studia Sci. Math. Hung.
– volume: 11
  start-page: 179
  year: 2002
  end-page: 189
  ident: br0140
  article-title: Some inequalities for the largest eigenvalue of a graph
  publication-title: Comb. Probab. Comput.
– year: 1970
  ident: br0160
  article-title: Eigenvalues of Graphs
– volume: 5
  start-page: 51
  year: 1983
  end-page: 64
  ident: br0040
  article-title: Lower bounds for the clique and the chromatic number of a graph
  publication-title: Discrete Appl. Math.
– volume: 3
  start-page: 50
  year: 1959
  end-page: 57
  ident: br0100
  article-title: On a problem of K. Zarankiewicz
  publication-title: Colloq. Math.
– start-page: 273
  year: 1975
  end-page: 281
  ident: br0090
  article-title: On the spectral radii of topologically equivalent graphs
  publication-title: Recent Advances in Graph Theory
– volume: 68
  start-page: 1
  year: 1996
  end-page: 6
  ident: br0070
  article-title: On the number of edges of quadrilateral-free graphs
  publication-title: J. Comb. Theory, Ser. B
– volume: vol. 25
  start-page: 167
  year: 2013
  end-page: 262
  ident: br0080
  article-title: The history of degenerate (bipartite) extremal graph problems
  publication-title: The Erdős Centennial
– volume: 9
  start-page: 269
  year: 1958
  end-page: 273
  ident: br0170
  article-title: Über ein problem von K. Zarankiewicz
  publication-title: Acta Math. Acad. Sci. Hung.
– volume: 430
  start-page: 2898
  year: 2009
  end-page: 2905
  ident: br0130
  article-title: The maximum spectral radius of
  publication-title: Linear Algebra Appl.
– year: 1970
  ident: 10.1016/j.disc.2021.112630_br0160
– volume: 418
  start-page: 257
  year: 2006
  ident: 10.1016/j.disc.2021.112630_br0150
  article-title: Walks and the spectral radius of graphs
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2006.02.003
– start-page: 273
  year: 1975
  ident: 10.1016/j.disc.2021.112630_br0090
  article-title: On the spectral radii of topologically equivalent graphs
– volume: 97
  start-page: 859
  year: 2007
  ident: 10.1016/j.disc.2021.112630_br0010
  article-title: Cliques and the spectral radius
  publication-title: J. Comb. Theory, Ser. B
  doi: 10.1016/j.jctb.2006.12.002
– volume: 11
  start-page: 179
  year: 2002
  ident: 10.1016/j.disc.2021.112630_br0140
  article-title: Some inequalities for the largest eigenvalue of a graph
  publication-title: Comb. Probab. Comput.
  doi: 10.1017/S0963548301004928
– year: 2010
  ident: 10.1016/j.disc.2021.112630_br0030
– volume: 3
  start-page: 50
  year: 1959
  ident: 10.1016/j.disc.2021.112630_br0100
  article-title: On a problem of K. Zarankiewicz
  publication-title: Colloq. Math.
  doi: 10.4064/cm-3-1-50-57
– volume: 34
  start-page: 187
  year: 1983
  ident: 10.1016/j.disc.2021.112630_br0060
  article-title: Graphs without quadrilaterals
  publication-title: J. Comb. Theory, Ser. B
  doi: 10.1016/0095-8956(83)90018-7
– volume: 30
  start-page: 258
  year: 2021
  ident: 10.1016/j.disc.2021.112630_br0110
  article-title: Eigenvalues and triangles in graphs
  publication-title: Comb. Probab. Comput.
  doi: 10.1017/S0963548320000462
– volume: 10
  start-page: 60
  year: 1907
  ident: 10.1016/j.disc.2021.112630_br0120
  article-title: Problem 28, soln. by H. Gouventak, W. Mantel, J. Teixeira de Mattes, F. Schuh and W.A. Wythoff
  publication-title: Wiskundige Opgaven
– volume: 68
  start-page: 1
  year: 1996
  ident: 10.1016/j.disc.2021.112630_br0070
  article-title: On the number of edges of quadrilateral-free graphs
  publication-title: J. Comb. Theory, Ser. B
  doi: 10.1006/jctb.1996.0052
– volume: vol. 25
  start-page: 167
  year: 2013
  ident: 10.1016/j.disc.2021.112630_br0080
  article-title: The history of degenerate (bipartite) extremal graph problems
– volume: 430
  start-page: 2898
  year: 2009
  ident: 10.1016/j.disc.2021.112630_br0130
  article-title: The maximum spectral radius of C4-free graphs of given order and size
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2009.01.002
– volume: 601
  start-page: 101
  year: 2020
  ident: 10.1016/j.disc.2021.112630_br0180
  article-title: Some upper bounds on the spectral radius of a graph
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2020.04.024
– volume: 9
  start-page: 269
  year: 1958
  ident: 10.1016/j.disc.2021.112630_br0170
  article-title: Über ein problem von K. Zarankiewicz
  publication-title: Acta Math. Acad. Sci. Hung.
  doi: 10.1007/BF02020254
– volume: 21
  start-page: 63
  year: 1957
  ident: 10.1016/j.disc.2021.112630_br0020
  article-title: Spektren endlicher Grafen
  publication-title: Abh. Math. Semin. Univ. Hamb.
  doi: 10.1007/BF02941924
– volume: 395
  start-page: 343
  year: 2005
  ident: 10.1016/j.disc.2021.112630_br0190
  article-title: The spectral radius of trees on k pendant vertices
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2004.08.025
– volume: 5
  start-page: 51
  year: 1983
  ident: 10.1016/j.disc.2021.112630_br0040
  article-title: Lower bounds for the clique and the chromatic number of a graph
  publication-title: Discrete Appl. Math.
  doi: 10.1016/0166-218X(83)90015-X
– volume: 1
  start-page: 215
  year: 1966
  ident: 10.1016/j.disc.2021.112630_br0050
  article-title: On a problem of graph theory
  publication-title: Studia Sci. Math. Hung.
SSID ssj0001638
Score 2.4479396
Snippet A classic result in extremal graph theory, known as Mantel's theorem, implies that every non-bipartite graph of order n with size m>⌊n2/4⌋ contains a triangle....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 112630
SubjectTerms Mantel's theorem
Quadrilateral
Spectral radius
Triangle
Title A spectral version of Mantel's theorem
URI https://dx.doi.org/10.1016/j.disc.2021.112630
Volume 345
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KvehBfGJ9lBxEDxKbfSRpjqVYqtKeLPQW9gmV2pa2evS3u5NNqoL04HWZgeTbZR7LfN8CXFtBeKza1vUmbRlyq1kotIlDl6qlpZoxkSA5eTBM-iP-NI7HNehWXBgcqyxjv4_pRbQuV1olmq3FZIIcX1QOcc0WQZEVhkRzzlM85fef32MeWG_4aExDtC6JM37GC5mvrkekpGDS4CT0X8npR8LpHcB-WSkGHf8xh1AzsyPYG2xkVlfHcNMJCqbk0tl9-IuvYG6DAaI1vV0FnqX4dgKj3sNLtx-WDx-EikXROrQZl0rwSAvDJE2TRGZJW6WMZtZ1N9RSJolFYXlNiObG1QhCGh5Jaa0WsSDsFOqz-cycQcCEjhKlpHG-3MZKUI0a867qkVyxLGoAqf44V6UqOD5OMc2r8a_XHFHKEaXco9SAu43PwmtibLWOKyDzXzubu6C9xe_8n34XsEuRolBck1xCfb18N1eucFjLZnEymrDTeXzuD78AyP_Afg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na8JAEB2sHtoeSj-p_cyhtIcSTHY30RylVGI1nhS8LfsJFquitr-_O0mUFoqHXsMOJC_Lm5ll3luABytCFqmWdb1JS_rMauoLbSLfpWppiaZUxChOzgZxOmJv42hcgZeNFgbHKkvuLzg9Z-vySaNEs7GYTFDji84hrtkK0WSFRntQQ3eqqAq1dreXDraEjCVHQcjEx4BSO1OMeaH41bWJJMzFNDgM_Vd--pFzOsdwVBaLXrt4nxOomNkpHGZbp9XVGTy2vVwsuXTrvoqzL29uvQwBmz6tvEKo-HEOo87r8CX1y7sPfEWDYO3bhEklWKCFoZI041gmcUs1KUmsa3CIJVSGFr3ldRhqZlyZIKRhgZTWahGJkF5AdTafmUvwqNBBrJQ0LpbZSAmi0WbeFT6SKZoEdQg3X8xVaQyO91NM-WYC7J0jShxR4gVKdXjexiwKW4ydq6MNkPzXz-WOt3fEXf0z7h7202HW5_3uoHcNBwQVC_mpyQ1U18tPc-vqiLW8K_fJN4CQwy8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+spectral+version+of+Mantel%27s+theorem&rft.jtitle=Discrete+mathematics&rft.au=Zhai%2C+Mingqing&rft.au=Shu%2C+Jinlong&rft.date=2022-01-01&rft.issn=0012-365X&rft.volume=345&rft.issue=1&rft.spage=112630&rft_id=info:doi/10.1016%2Fj.disc.2021.112630&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_disc_2021_112630
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-365X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-365X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-365X&client=summon