Effect of Iodide on the pH-Controlled Hydrogenations of Diphenylacetylene and Cinnamaldehyde Catalyzed by Ru(II)-Sulfonated Triphenylphosphine Complexes in Aqueous–Organic Biphasic Systems

The effect of NaI on hydrogenation of diphenylacetylene catalyzed by the water-soluble [{RuCl(mtppms-Na)2}2(µ-Cl)2] (1) (mtppms-Na = meta-monosulfonated triphenylphosphine sodium salt) is reported. Hydrogenations were performed under mild conditions (P(H2) = 1 bar, T = 50–80 ℃) in aqueous–organic bi...

Full description

Saved in:
Bibliographic Details
Published inCatalysts Vol. 12; no. 5; p. 518
Main Authors Kathó, Ágnes, Horváth, Henrietta H., Papp, Gábor, Joó, Ferenc
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The effect of NaI on hydrogenation of diphenylacetylene catalyzed by the water-soluble [{RuCl(mtppms-Na)2}2(µ-Cl)2] (1) (mtppms-Na = meta-monosulfonated triphenylphosphine sodium salt) is reported. Hydrogenations were performed under mild conditions (P(H2) = 1 bar, T = 50–80 ℃) in aqueous–organic biphasic reaction mixtures wherein the catalyst was dissolved in aqueous phase of various pHs. In acidic solutions, addition of NaI to 1 + mtppms-Na increased the selective conversion of diphenylacetylene to stilbenes from 10% to 90% but did not effect the high Z-selectivity (up to 98%). In contrast, in basic solutions the major product was diphenylethane (up to 70%), and the yield of E-stilbene exceeded that of the Z-isomer. 1H and 31P NMR measurements revealed that depending on the absence or presence of NaI, the catalytically active Ru(II)-hydride species in acidic solutions was [RuHCl(mtppms-Na)3], 2, or [RuHI(mtppms-Na)3], 5, respectively, while in basic solutions, both 2 and 5 were hydrogenated further to yield the same hydride species, cis,fac-[RuH2(H2O)(mtppms-Na)3]. [RuHI(mtppms-Na)3] proved superior to [RuHCl(mtppms-Na)3] as a catalyst for the selective hydrogenation of cinnamaldehyde to dihydrocinamaldehyde. This finding was explained by a facile formation of a (putative) dihydrogen complex [Ru(H2)I2(H2O)(mtppms-Na)2] intermediate, resulting in fast heterolytic activation of H2.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal12050518