Predicting Daily PM2.5 Exposure with Spatially Invariant Accuracy Using Co-Existing Pollutant Concentrations as Predictors

The spatiotemporal variation of PM2.5 should be accurately estimated for epidemiological studies. However, the accuracy of prediction models may change over geographical space, which is not conducive for proper exposure assessment. In this study, we developed a prediction model to estimate daily PM2...

Full description

Saved in:
Bibliographic Details
Published inAtmosphere Vol. 13; no. 5; p. 782
Main Authors Araki, Shin, Shimadera, Hikari, Hasunuma, Hideki, Yoda, Yoshiko, Shima, Masayuki
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The spatiotemporal variation of PM2.5 should be accurately estimated for epidemiological studies. However, the accuracy of prediction models may change over geographical space, which is not conducive for proper exposure assessment. In this study, we developed a prediction model to estimate daily PM2.5 concentrations from 2010 to 2017 in the Kansai region of Japan with co-existing pollutant concentrations as predictors. The overall objective was to obtain daily estimates over the study domain with spatially homogeneous accuracy. We used random forest algorithm to model the relationship between the daily PM2.5 concentrations and various predictors. The model performance was evaluated via spatial and temporal cross-validation and the daily PM2.5 surface was estimated from 2010 to 2017 at a 1 km × 1 km resolution. We achieved R2 values of 0.91 and 0.92 for spatial and temporal cross-validation, respectively. The prediction accuracy for each monitoring site was found to be consistently high, regardless of the distance to the nearest monitoring location, up to 10 km. Even for distances greater than 10 km, the mean R2 value was 0.88. Our approach yielded spatially homogeneous prediction accuracy, which is beneficial for epidemiological studies. The daily PM2.5 estimates will be used in a related birth cohort study to evaluate the potential impact on human health.
ISSN:2073-4433
2073-4433
DOI:10.3390/atmos13050782