Generalized phase retrieval: Measurement number, matrix recovery and beyond

In this paper, we develop a framework of generalized phase retrieval in which one aims to reconstruct a vector x in Rd or Cd through quadratic samples x⁎A1x,…,x⁎ANx. The generalized phase retrieval includes as special cases the standard phase retrieval as well as the phase retrieval by orthogonal pr...

Full description

Saved in:
Bibliographic Details
Published inApplied and computational harmonic analysis Vol. 47; no. 2; pp. 423 - 446
Main Authors Wang, Yang, Xu, Zhiqiang
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.09.2019
Subjects
Online AccessGet full text
ISSN1063-5203
1096-603X
DOI10.1016/j.acha.2017.09.003

Cover

Loading…
More Information
Summary:In this paper, we develop a framework of generalized phase retrieval in which one aims to reconstruct a vector x in Rd or Cd through quadratic samples x⁎A1x,…,x⁎ANx. The generalized phase retrieval includes as special cases the standard phase retrieval as well as the phase retrieval by orthogonal projections. We first explore the connections among generalized phase retrieval, low-rank matrix recovery and nonsingular bilinear form. Motivated by the connections, we present results on the minimal measurement number needed for recovering a matrix that lies in a set W∈Cd×d. Applying the results to phase retrieval, we show that generic d×d matrices A1,…,AN have the phase retrieval property if N≥2d−1 in the real case and N≥4d−4 in the complex case for very general classes of A1,…,AN, e.g. matrices with prescribed ranks or orthogonal projections. We also give lower bounds on the minimal measurement number required for generalized phase retrieval. For several classes of dimensions d we obtain the precise values of the minimal measurement number. Our work unifies and enhances results from the standard phase retrieval, phase retrieval by projections and low-rank matrix recovery.
ISSN:1063-5203
1096-603X
DOI:10.1016/j.acha.2017.09.003