Automatically detecting apnea-hypopnea snoring signal based on VGG19 + LSTM

Snoring is a typical syndrome of obstructive sleep apnea hypopnea syndrome (OSAHS). The acoustic analysis of snoring sound has been proved potential to develop a non-invasive approach for assisting diagnose OSAHS. In this work, a pre-trained VGG19 and the long short-term memory (LSTM) fused model wa...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 80; p. 104351
Main Authors Ding, Li, Peng, Jianxin, Song, Lijuan, Zhang, Xiaowen
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2023
Subjects
Online AccessGet full text
ISSN1746-8094
1746-8108
DOI10.1016/j.bspc.2022.104351

Cover

Loading…
Abstract Snoring is a typical syndrome of obstructive sleep apnea hypopnea syndrome (OSAHS). The acoustic analysis of snoring sound has been proved potential to develop a non-invasive approach for assisting diagnose OSAHS. In this work, a pre-trained VGG19 and the long short-term memory (LSTM) fused model was proposed to classify snoring sounds of simple snorers and OSAHS patients and detect apnea-hypopnea snoring from the whole night recorded sounds of patients. Mel-spectrograms of snoring sounds were fed into the VGG19 + LSTM model to learn relatively distinguishable features. Compared with other fused models, the proposed VGG19 + LSTM model yielded the highest accuracy of 99.31 % in classifying simple snorers’ snoring and OSAHS patients’ snoring. For distinguishing normal snoring and apnea-hypopnea snoring of patients, the VGG19 + LSTM achieved 85.21 % and 66.29 % accuracies based on hold-out and leave-one-subject-out validation methods respectively. The estimated AHI highly correlated with PSG AHI with a Pearson correlation coefficient of 0.966 (p < 0.001). Results of the proposed model demonstrate that acoustic analysis of snoring sounds has great potential for screening sleep and diagnosing OSAHS.
AbstractList Snoring is a typical syndrome of obstructive sleep apnea hypopnea syndrome (OSAHS). The acoustic analysis of snoring sound has been proved potential to develop a non-invasive approach for assisting diagnose OSAHS. In this work, a pre-trained VGG19 and the long short-term memory (LSTM) fused model was proposed to classify snoring sounds of simple snorers and OSAHS patients and detect apnea-hypopnea snoring from the whole night recorded sounds of patients. Mel-spectrograms of snoring sounds were fed into the VGG19 + LSTM model to learn relatively distinguishable features. Compared with other fused models, the proposed VGG19 + LSTM model yielded the highest accuracy of 99.31 % in classifying simple snorers’ snoring and OSAHS patients’ snoring. For distinguishing normal snoring and apnea-hypopnea snoring of patients, the VGG19 + LSTM achieved 85.21 % and 66.29 % accuracies based on hold-out and leave-one-subject-out validation methods respectively. The estimated AHI highly correlated with PSG AHI with a Pearson correlation coefficient of 0.966 (p < 0.001). Results of the proposed model demonstrate that acoustic analysis of snoring sounds has great potential for screening sleep and diagnosing OSAHS.
ArticleNumber 104351
Author Song, Lijuan
Zhang, Xiaowen
Peng, Jianxin
Ding, Li
Author_xml – sequence: 1
  givenname: Li
  surname: Ding
  fullname: Ding, Li
  organization: School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
– sequence: 2
  givenname: Jianxin
  surname: Peng
  fullname: Peng, Jianxin
  email: phjxpeng@163.com
  organization: School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
– sequence: 3
  givenname: Lijuan
  surname: Song
  fullname: Song, Lijuan
  organization: State Key Laboratory of Respiratory Disease, Department of Otolaryngology-Head and Neck Surgery, Laboratory of ENT-HNS Disease, First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China
– sequence: 4
  givenname: Xiaowen
  surname: Zhang
  fullname: Zhang, Xiaowen
  organization: State Key Laboratory of Respiratory Disease, Department of Otolaryngology-Head and Neck Surgery, Laboratory of ENT-HNS Disease, First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China
BookMark eNp9kM1Kw0AUhQepYFt9AVfZS-L8JZmAm1K0Ci0urG6HyeSmTklnwkwU-jZ9lj6ZCdWNi67u4cB34XwTNLLOAkK3BCcEk-x-m5Sh1QnFlPYFZym5QGOS8ywWBIvRX8YFv0KTELYYc5ETPkar2VfndqozWjXNPqqgA90Zu4lUa0HFn_vWDSEK1vmhDmZjVROVKkAVORt9LBakOB7ujofl23p1jS5r1QS4-b1T9P70uJ4_x8vXxct8tow1w7iLS5qWpC44L1NFC61ylfK8Bi5SWhQZzaCo6owJwRnFglMtqoyTkqWcAgPMKjZF4vRXexeCh1pq0_UjnO28Mo0kWA5a5FYOWuSgRZ609Cj9h7be7JTfn4ceThD0o74NeBm0AauhMr73JStnzuE_U61-BQ
CitedBy_id crossref_primary_10_3390_s24237782
crossref_primary_10_1016_j_bspc_2024_107472
crossref_primary_10_1007_s13246_023_01345_1
crossref_primary_10_1109_TIM_2023_3312698
crossref_primary_10_17780_ksujes_1205807
crossref_primary_10_3390_electronics13132567
crossref_primary_10_1016_j_amjoto_2023_103964
crossref_primary_10_3389_fnins_2024_1336307
crossref_primary_10_1007_s40747_024_01648_0
crossref_primary_10_1007_s13755_024_00320_8
crossref_primary_10_1088_1361_6579_ad4953
crossref_primary_10_1016_j_apacoust_2023_109811
Cites_doi 10.1097/01.mcp.0000143689.86819.c2
10.1155/2020/8864863
10.1109/JBHI.2020.3012666
10.1111/jsr.13490
10.21037/jtd-20-804
10.1109/TITB.2010.2087386
10.1007/s00405-016-4335-4
10.1016/j.smrv.2016.07.002
10.1007/s13246-016-0507-1
10.1016/j.cmpb.2017.01.001
10.1016/j.energy.2019.05.230
10.1183/09031936.01.17508380
10.1159/000335839
10.1007/s42979-020-0114-9
10.1001/jamaoto.2022.0244
10.1016/j.eswa.2020.114513
10.1038/s41597-021-00977-w
10.1016/j.bspc.2021.103238
10.5665/sleep.2092
10.1016/j.compbiomed.2018.06.028
10.1088/1361-6579/ab9e7b
10.1016/j.smrv.2009.06.002
10.1109/JBHI.2022.3154719
10.1162/neco_a_01199
10.1088/0967-3334/35/1/R1
10.1088/0967-3334/32/1/006
10.1016/j.sleep.2021.06.012
10.1093/sleep/zsab030
10.1016/j.apacoust.2021.108429
10.1109/ACCESS.2020.2969227
10.1016/j.cmpb.2021.106119
10.1109/JBHI.2021.3078127
10.1001/jama.2020.3514
10.1001/jama.291.16.2013
10.1109/TIFS.2019.2941773
10.1016/j.mehy.2019.03.026
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2022.104351
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2022_104351
S1746809422008059
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c300t-b25b1f944b5a29ca7a547fe485299626e9df63884320842c8d641b3542e3e03d3
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Tue Jul 01 01:34:15 EDT 2025
Thu Apr 24 23:00:59 EDT 2025
Fri Feb 23 02:39:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Obstructive sleep apnea hypopnea syndrome
LSTM
VGG19
Snoring sounds
Transfer learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-b25b1f944b5a29ca7a547fe485299626e9df63884320842c8d641b3542e3e03d3
ParticipantIDs crossref_citationtrail_10_1016_j_bspc_2022_104351
crossref_primary_10_1016_j_bspc_2022_104351
elsevier_sciencedirect_doi_10_1016_j_bspc_2022_104351
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kim, Cho (b0150) 2019; 182
Young (b0010) 2004; 291
Molin, Molin, Dalpatadu, Singh (b0190) 2021; 4
Cho, Jung, Shin, Won, Rhee, Kim (b0195) 2022; 148
Luo, Liu, Gao, Wang, Zhu, Shi, Hei, Ren (b0120) 2020; 41
Silveira, Cardoso, Lourenço, Ahlström (b0210) 2019; 13
Malhotra, Ayappa, Ayas, Collop, Kirsch, Mcardle, Mehra, Pack, Punjabi, White, Gottlieb (b0040) 2021; 44
Pombo, Garcia, Bousson (b0060) 2017; 140
Shen, Cheng, Li, Yue, Li, Dai, Yao (b0020) 2020; 2020
Wu, Pang, Zhao, Yue, Lei, Wang (b0070) 2021; 206
Yu, Si, Hu, Zhang (b0155) 2019; 31
Choi, Yoon, Kim, Kim, Kwon, Oh, Lee, Park (b0100) 2018; 100
Theckedath, Sedamkar (b0175) 2020; 1
Karunajeewa, Abeyratne, Hukins (b0115) 2011; 32
Arslan Tuncer, Akılotu, Toraman (b0085) 2019; 127
Senaratna, Perret, Lodge, Lowe, Campbell, Matheson, Hamilton, Dharmage (b0015) 2017; 34
Jiang, Peng, Song (b0025) 2021; 84
Jané, Solà-Soler, Fiz, Morera (b0110) 2000; 4
K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, (2014). http://arxiv.org/abs/1409.1556.
Qian, Janott, Schmitt, Zhang, Heiser, Hemmert, Yamamoto, Schuller (b0055) 2020; 25
Gottlieb, Punjabi (b0005) 2020; 323
Koo, Kwon, Kim, Moon, Kim, Jung (b0030) 2017; 274
Pevernagie, Aarts, de Meyer (b0105) 2010; 14
H. Limin, W. Zhang, D. Shi, L. Huancheng, Estimation of apnea hypopnea index based on acoustic features of snoring, (2019). https://doi.org/10.12066/j.issn.1007-2861.1942.
G. Bao, C. Guilleminault, Upper airway resistance syndrome-one decade later, 2004.
Hanif, Leary, Schneider, Paulsen, Morse, Blackman, Schweitzer, Kushida, Liu, Jennum, Sorensen, Mignot (b0080) 2021; 25
W.D.R.S.L.-J.L.K.L. and L.F.-F. Jia Deng, ImageNet: a large-scale hierarchical image database, IEEE, 2009.
Bsoul, Minn, Tamil (b0090) 2011; 15
Chowdhury, Ross (b0165) 2020; 15
Roebuck, Monasterio, Gederi, Osipov, Behar, Malhotra, Penzel, Clifford (b0050) 2014; 35
Cheng, Wang, Yue, Li, Shen, Shuai, Li, Dai (b0125) 2022; 71
Kang, Kim, Mariani, Cho, Winkelman, Park, Kang (b0095) 2020; 10
Hafezi, Montazeri, Saha, Zhu, Gavrilovic, Yadollahi, Taati (b0200) 2020; 8
Sun, Peng, Zhang, Song (b0045) 2022; 185
C. Guilleminault, Y. do Kim, S. Chowdhuri, M. Horita, M. Ohayon, C. Kushida, Sleep and daytime sleepiness in upper airway resistance syndrome compared to obstructive sleep apnoea syndrome, 2001.
Yan, Liao, Yang, Sun, Nong, Li (b0145) 2021; 169
Wang, Peng, Song, Zhang (b0160) 2017; 40
Montazeri Ghahjaverestan, Saha, Kabir, Gavrilovic, Zhu, Yadollahi (b0075) 2022; 31
F. Chollet, Xception: Deep Learning with Depthwise Separable Convolutions, n.d.
Tiron, Lyon, Kilroy, Osman, Kelly, O’Mahony, Lopes, Coffey, McMahon, Wren, Conway, Fox, Costello, Shouldice, Lederer, Fietze, Penzel (b0185) 2020; 12
C. Ittichaichareon, Speech recognition using MFCC, … Conference on Computer …. (2012) 135–138. https://doi.org/10.13140/RG.2.1.2598.3208.
Pépin, Guillot, Tamisier, Lévy (b0215) 2012; 83
Ben-Israel, Tarasiuk, Zigel (b0065) 2012; 35
Korompili, Amfilochiou, Kokkalas, Mitilineos, Tatlas, Kouvaras, Kastanakis, Maniou, Potirakis (b0035) 2021; 8
Romero, Ma, Brown, Hill (b0205) 2022; 26
Choi (10.1016/j.bspc.2022.104351_b0100) 2018; 100
Montazeri Ghahjaverestan (10.1016/j.bspc.2022.104351_b0075) 2022; 31
Yu (10.1016/j.bspc.2022.104351_b0155) 2019; 31
Shen (10.1016/j.bspc.2022.104351_b0020) 2020; 2020
Tiron (10.1016/j.bspc.2022.104351_b0185) 2020; 12
10.1016/j.bspc.2022.104351_b0180
Pépin (10.1016/j.bspc.2022.104351_b0215) 2012; 83
Cho (10.1016/j.bspc.2022.104351_b0195) 2022; 148
Hafezi (10.1016/j.bspc.2022.104351_b0200) 2020; 8
Koo (10.1016/j.bspc.2022.104351_b0030) 2017; 274
Korompili (10.1016/j.bspc.2022.104351_b0035) 2021; 8
10.1016/j.bspc.2022.104351_b0130
Hanif (10.1016/j.bspc.2022.104351_b0080) 2021; 25
10.1016/j.bspc.2022.104351_b0135
Gottlieb (10.1016/j.bspc.2022.104351_b0005) 2020; 323
Pombo (10.1016/j.bspc.2022.104351_b0060) 2017; 140
Ben-Israel (10.1016/j.bspc.2022.104351_b0065) 2012; 35
Roebuck (10.1016/j.bspc.2022.104351_b0050) 2014; 35
Karunajeewa (10.1016/j.bspc.2022.104351_b0115) 2011; 32
Silveira (10.1016/j.bspc.2022.104351_b0210) 2019; 13
Kim (10.1016/j.bspc.2022.104351_b0150) 2019; 182
Molin (10.1016/j.bspc.2022.104351_b0190) 2021; 4
Romero (10.1016/j.bspc.2022.104351_b0205) 2022; 26
Jiang (10.1016/j.bspc.2022.104351_b0025) 2021; 84
Wu (10.1016/j.bspc.2022.104351_b0070) 2021; 206
Young (10.1016/j.bspc.2022.104351_b0010) 2004; 291
Pevernagie (10.1016/j.bspc.2022.104351_b0105) 2010; 14
Malhotra (10.1016/j.bspc.2022.104351_b0040) 2021; 44
Qian (10.1016/j.bspc.2022.104351_b0055) 2020; 25
Kang (10.1016/j.bspc.2022.104351_b0095) 2020; 10
Theckedath (10.1016/j.bspc.2022.104351_b0175) 2020; 1
Jané (10.1016/j.bspc.2022.104351_b0110) 2000; 4
Wang (10.1016/j.bspc.2022.104351_b0160) 2017; 40
Senaratna (10.1016/j.bspc.2022.104351_b0015) 2017; 34
10.1016/j.bspc.2022.104351_b0170
10.1016/j.bspc.2022.104351_b0220
10.1016/j.bspc.2022.104351_b0140
Bsoul (10.1016/j.bspc.2022.104351_b0090) 2011; 15
Cheng (10.1016/j.bspc.2022.104351_b0125) 2022; 71
Yan (10.1016/j.bspc.2022.104351_b0145) 2021; 169
Chowdhury (10.1016/j.bspc.2022.104351_b0165) 2020; 15
10.1016/j.bspc.2022.104351_b0225
Luo (10.1016/j.bspc.2022.104351_b0120) 2020; 41
Sun (10.1016/j.bspc.2022.104351_b0045) 2022; 185
Arslan Tuncer (10.1016/j.bspc.2022.104351_b0085) 2019; 127
References_xml – volume: 44
  year: 2021
  ident: b0040
  article-title: Metrics of sleep apnea severity: Beyond the apnea-hypopnea index
  publication-title: Sleep
– volume: 13
  start-page: 398
  year: 2019
  end-page: 405
  ident: b0210
  article-title: Importance of subject-dependent classification and imbalanced distributions in driver sleepiness detection in realistic conditions
  publication-title: IET Intel. Transport Syst.
– volume: 12
  start-page: 4476
  year: 2020
  end-page: 4495
  ident: b0185
  article-title: Screening for obstructive sleep apnea with novel hybrid acoustic smartphone app technology
  publication-title: J. Thorac. Dis.
– volume: 84
  start-page: 317
  year: 2021
  end-page: 323
  ident: b0025
  article-title: An OSAHS evaluation method based on multi-features acoustic analysis of snoring sounds
  publication-title: Sleep Med.
– volume: 274
  start-page: 1735
  year: 2017
  end-page: 1740
  ident: b0030
  article-title: Acoustic analysis of snoring sounds recorded with a smartphone according to obstruction site in OSAS patients
  publication-title: Eur. Arch. Otorhinolaryngol.
– volume: 41
  start-page: 075009
  year: 2020
  ident: b0120
  article-title: A novel deep feature transfer-based OSA detection method using sleep sound signals
  publication-title: Physiol. Meas.
– volume: 8
  year: 2021
  ident: b0035
  article-title: PSG-Audio, a scored polysomnography dataset with simultaneous audio recordings for sleep apnea studies
  publication-title: Sci. Data
– volume: 83
  start-page: 559
  year: 2012
  end-page: 566
  ident: b0215
  article-title: The upper airway resistance syndrome
  publication-title: Respiration
– reference: G. Bao, C. Guilleminault, Upper airway resistance syndrome-one decade later, 2004.
– volume: 25
  start-page: 1233
  year: 2020
  end-page: 1246
  ident: b0055
  article-title: Can Machine Learning Assist Locating the Excitation of Snore Sound? A Review
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 169
  start-page: 114513
  year: 2021
  ident: b0145
  article-title: Multi-hour and multi-site air quality index forecasting in Beijing using CNN, LSTM, CNN-LSTM, and spatiotemporal clustering
  publication-title: Expert Syst. Appl.
– volume: 182
  start-page: 72
  year: 2019
  end-page: 81
  ident: b0150
  article-title: Predicting residential energy consumption using CNN-LSTM neural networks
  publication-title: Energy.
– volume: 15
  start-page: 1616
  year: 2020
  end-page: 1629
  ident: b0165
  article-title: Fusing MFCC and LPC features using 1D Triplet CNN for speaker recognition in severely degraded audio signals
  publication-title: IEEE Trans. Inf. Forensics Secur.
– volume: 31
  start-page: 1235
  year: 2019
  end-page: 1270
  ident: b0155
  article-title: A review of recurrent neural networks: Lstm cells and network architectures
  publication-title: Neural Comput.
– volume: 291
  start-page: 2013
  year: 2004
  ident: b0010
  article-title: Risk Factors for Obstructive Sleep Apnea in Adults
  publication-title: JAMA
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 10
  ident: b0020
  article-title: Detection of snore from OSAHS patients based on deep learning
  publication-title: J. Healthc. Eng.
– volume: 148
  start-page: 515
  year: 2022
  ident: b0195
  article-title: Evaluating Prediction Models of Sleep Apnea From Smartphone-Recorded Sleep Breathing Sounds
  publication-title: JAMA Otolaryngol. Head Neck Surg.
– volume: 8
  start-page: 22641
  year: 2020
  end-page: 22649
  ident: b0200
  article-title: Sleep Apnea Severity Estimation from Tracheal Movements Using a Deep Learning Model
  publication-title: IEEE Access
– volume: 26
  start-page: 2941
  year: 2022
  end-page: 2950
  ident: b0205
  article-title: Acoustic Screening for Obstructive Sleep Apnea in Home Environments Based on Deep Neural Networks
  publication-title: IEEE J. Biomed. Health Inform.
– reference: H. Limin, W. Zhang, D. Shi, L. Huancheng, Estimation of apnea hypopnea index based on acoustic features of snoring, (2019). https://doi.org/10.12066/j.issn.1007-2861.1942.
– reference: F. Chollet, Xception: Deep Learning with Depthwise Separable Convolutions, n.d.
– volume: 15
  start-page: 416
  year: 2011
  end-page: 427
  ident: b0090
  article-title: Apnea MedAssist: Real-time sleep apnea monitor using single-lead ECG
  publication-title: IEEE Trans. Inf Technol. Biomed.
– reference: C. Ittichaichareon, Speech recognition using MFCC, … Conference on Computer …. (2012) 135–138. https://doi.org/10.13140/RG.2.1.2598.3208.
– volume: 4
  year: 2021
  ident: b0190
  article-title: Prediction of obstructive sleep apnea using Fast Fourier Transform of overnight breath recordings
  publication-title: Mach. Learn. Appl.
– volume: 1
  year: 2020
  ident: b0175
  article-title: Detecting Affect States Using VGG16, ResNet50 and SE-ResNet50 Networks
  publication-title: SN Comput. Sci.
– reference: C. Guilleminault, Y. do Kim, S. Chowdhuri, M. Horita, M. Ohayon, C. Kushida, Sleep and daytime sleepiness in upper airway resistance syndrome compared to obstructive sleep apnoea syndrome, 2001.
– reference: K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, (2014). http://arxiv.org/abs/1409.1556.
– volume: 14
  start-page: 131
  year: 2010
  end-page: 144
  ident: b0105
  article-title: The acoustics of snoring
  publication-title: Sleep Med. Rev.
– volume: 35
  start-page: R1
  year: 2014
  end-page: R57
  ident: b0050
  article-title: A review of signals used in sleep analysis
  publication-title: Physiol. Meas.
– reference: W.D.R.S.L.-J.L.K.L. and L.F.-F. Jia Deng, ImageNet: a large-scale hierarchical image database, IEEE, 2009.
– volume: 35
  start-page: 1299
  year: 2012
  end-page: 1305
  ident: b0065
  article-title: Obstructive apnea hypopnea index estimation by analysis of nocturnal snoring signals in adults
  publication-title: Sleep
– volume: 100
  start-page: 123
  year: 2018
  end-page: 131
  ident: b0100
  article-title: Real-time apnea-hypopnea event detection during sleep by convolutional neural networks
  publication-title: Comput. Biol. Med.
– volume: 4
  start-page: 3129
  year: 2000
  end-page: 3131
  ident: b0110
  article-title: Automatic detection of snoring signals: Validation with simple snorers and OSAS patients
  publication-title: Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings.
– volume: 71
  start-page: 103238
  year: 2022
  ident: b0125
  article-title: Automated sleep apnea detection in snoring signal using long short-term memory neural networks
  publication-title: Biomed. Signal Process. Control
– volume: 323
  start-page: 1380
  year: 2020
  end-page: 1400
  ident: b0005
  article-title: Diagnosis and Management of Obstructive Sleep Apnea: A Review
  publication-title: JAMA – J. Am. Med. Assoc.
– volume: 31
  year: 2022
  ident: b0075
  article-title: Sleep apnea severity based on estimated tidal volume and snoring features from tracheal signals
  publication-title: J. Sleep Res.
– volume: 25
  start-page: 4185
  year: 2021
  end-page: 4194
  ident: b0080
  article-title: Estimation of Apnea-Hypopnea Index Using Deep Learning on 3-D Craniofacial Scans
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 127
  start-page: 15
  year: 2019
  end-page: 22
  ident: b0085
  article-title: A deep learning-based decision support system for diagnosis of OSAS using PTT signals
  publication-title: Med. Hypotheses
– volume: 40
  start-page: 127
  year: 2017
  end-page: 135
  ident: b0160
  article-title: Automatic snoring sounds detection from sleep sounds via multi-features analysis
  publication-title: Australas. Phys. Eng. Sci. Med.
– volume: 32
  start-page: 83
  year: 2011
  end-page: 97
  ident: b0115
  article-title: Multi-feature snore sound analysis in obstructive sleep apnea-hypopnea syndrome
  publication-title: Physiol. Meas.
– volume: 206
  start-page: 106119
  year: 2021
  ident: b0070
  article-title: A novel approach to diagnose sleep apnea using enhanced frequency extraction network
  publication-title: Comput. Methods Programs Biomed.
– volume: 34
  start-page: 70
  year: 2017
  end-page: 81
  ident: b0015
  article-title: Prevalence of obstructive sleep apnea in the general population: A systematic review
  publication-title: Sleep Med. Rev.
– volume: 140
  start-page: 265
  year: 2017
  end-page: 274
  ident: b0060
  article-title: Classification techniques on computerized systems to predict and/or to detect Apnea: A systematic review
  publication-title: Comput. Methods Programs Biomed.
– volume: 185
  start-page: 108429
  year: 2022
  ident: b0045
  article-title: Effective feature selection based on fisher ratio for snoring recognition using different validation methods
  publication-title: Appl. Acoust.
– volume: 10
  year: 2020
  ident: b0095
  article-title: Difference in spectral power density of sleep EEG between patients with simple snoring and those with obstructive sleep apnoea
  publication-title: Sci. Rep.
– volume: 10
  year: 2020
  ident: 10.1016/j.bspc.2022.104351_b0095
  article-title: Difference in spectral power density of sleep EEG between patients with simple snoring and those with obstructive sleep apnoea
  publication-title: Sci. Rep.
– ident: 10.1016/j.bspc.2022.104351_b0220
  doi: 10.1097/01.mcp.0000143689.86819.c2
– ident: 10.1016/j.bspc.2022.104351_b0135
– volume: 2020
  start-page: 1
  year: 2020
  ident: 10.1016/j.bspc.2022.104351_b0020
  article-title: Detection of snore from OSAHS patients based on deep learning
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2020/8864863
– volume: 25
  start-page: 1233
  year: 2020
  ident: 10.1016/j.bspc.2022.104351_b0055
  article-title: Can Machine Learning Assist Locating the Excitation of Snore Sound? A Review
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.3012666
– volume: 31
  year: 2022
  ident: 10.1016/j.bspc.2022.104351_b0075
  article-title: Sleep apnea severity based on estimated tidal volume and snoring features from tracheal signals
  publication-title: J. Sleep Res.
  doi: 10.1111/jsr.13490
– volume: 12
  start-page: 4476
  year: 2020
  ident: 10.1016/j.bspc.2022.104351_b0185
  article-title: Screening for obstructive sleep apnea with novel hybrid acoustic smartphone app technology
  publication-title: J. Thorac. Dis.
  doi: 10.21037/jtd-20-804
– volume: 15
  start-page: 416
  year: 2011
  ident: 10.1016/j.bspc.2022.104351_b0090
  article-title: Apnea MedAssist: Real-time sleep apnea monitor using single-lead ECG
  publication-title: IEEE Trans. Inf Technol. Biomed.
  doi: 10.1109/TITB.2010.2087386
– volume: 274
  start-page: 1735
  year: 2017
  ident: 10.1016/j.bspc.2022.104351_b0030
  article-title: Acoustic analysis of snoring sounds recorded with a smartphone according to obstruction site in OSAS patients
  publication-title: Eur. Arch. Otorhinolaryngol.
  doi: 10.1007/s00405-016-4335-4
– volume: 34
  start-page: 70
  year: 2017
  ident: 10.1016/j.bspc.2022.104351_b0015
  article-title: Prevalence of obstructive sleep apnea in the general population: A systematic review
  publication-title: Sleep Med. Rev.
  doi: 10.1016/j.smrv.2016.07.002
– volume: 40
  start-page: 127
  year: 2017
  ident: 10.1016/j.bspc.2022.104351_b0160
  article-title: Automatic snoring sounds detection from sleep sounds via multi-features analysis
  publication-title: Australas. Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-016-0507-1
– volume: 140
  start-page: 265
  year: 2017
  ident: 10.1016/j.bspc.2022.104351_b0060
  article-title: Classification techniques on computerized systems to predict and/or to detect Apnea: A systematic review
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2017.01.001
– volume: 182
  start-page: 72
  year: 2019
  ident: 10.1016/j.bspc.2022.104351_b0150
  article-title: Predicting residential energy consumption using CNN-LSTM neural networks
  publication-title: Energy.
  doi: 10.1016/j.energy.2019.05.230
– ident: 10.1016/j.bspc.2022.104351_b0225
  doi: 10.1183/09031936.01.17508380
– volume: 83
  start-page: 559
  year: 2012
  ident: 10.1016/j.bspc.2022.104351_b0215
  article-title: The upper airway resistance syndrome
  publication-title: Respiration
  doi: 10.1159/000335839
– volume: 13
  start-page: 398
  year: 2019
  ident: 10.1016/j.bspc.2022.104351_b0210
  article-title: Importance of subject-dependent classification and imbalanced distributions in driver sleepiness detection in realistic conditions
  publication-title: IET Intel. Transport Syst.
– volume: 1
  year: 2020
  ident: 10.1016/j.bspc.2022.104351_b0175
  article-title: Detecting Affect States Using VGG16, ResNet50 and SE-ResNet50 Networks
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-020-0114-9
– volume: 4
  start-page: 3129
  year: 2000
  ident: 10.1016/j.bspc.2022.104351_b0110
  article-title: Automatic detection of snoring signals: Validation with simple snorers and OSAS patients
  publication-title: Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings.
– volume: 148
  start-page: 515
  issue: 6
  year: 2022
  ident: 10.1016/j.bspc.2022.104351_b0195
  article-title: Evaluating Prediction Models of Sleep Apnea From Smartphone-Recorded Sleep Breathing Sounds
  publication-title: JAMA Otolaryngol. Head Neck Surg.
  doi: 10.1001/jamaoto.2022.0244
– volume: 169
  start-page: 114513
  year: 2021
  ident: 10.1016/j.bspc.2022.104351_b0145
  article-title: Multi-hour and multi-site air quality index forecasting in Beijing using CNN, LSTM, CNN-LSTM, and spatiotemporal clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114513
– volume: 8
  year: 2021
  ident: 10.1016/j.bspc.2022.104351_b0035
  article-title: PSG-Audio, a scored polysomnography dataset with simultaneous audio recordings for sleep apnea studies
  publication-title: Sci. Data
  doi: 10.1038/s41597-021-00977-w
– volume: 71
  start-page: 103238
  year: 2022
  ident: 10.1016/j.bspc.2022.104351_b0125
  article-title: Automated sleep apnea detection in snoring signal using long short-term memory neural networks
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.103238
– ident: 10.1016/j.bspc.2022.104351_b0130
– volume: 35
  start-page: 1299
  year: 2012
  ident: 10.1016/j.bspc.2022.104351_b0065
  article-title: Obstructive apnea hypopnea index estimation by analysis of nocturnal snoring signals in adults
  publication-title: Sleep
  doi: 10.5665/sleep.2092
– volume: 100
  start-page: 123
  year: 2018
  ident: 10.1016/j.bspc.2022.104351_b0100
  article-title: Real-time apnea-hypopnea event detection during sleep by convolutional neural networks
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.06.028
– volume: 41
  start-page: 075009
  issue: 7
  year: 2020
  ident: 10.1016/j.bspc.2022.104351_b0120
  article-title: A novel deep feature transfer-based OSA detection method using sleep sound signals
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/ab9e7b
– ident: 10.1016/j.bspc.2022.104351_b0180
– volume: 14
  start-page: 131
  year: 2010
  ident: 10.1016/j.bspc.2022.104351_b0105
  article-title: The acoustics of snoring
  publication-title: Sleep Med. Rev.
  doi: 10.1016/j.smrv.2009.06.002
– volume: 26
  start-page: 2941
  issue: 7
  year: 2022
  ident: 10.1016/j.bspc.2022.104351_b0205
  article-title: Acoustic Screening for Obstructive Sleep Apnea in Home Environments Based on Deep Neural Networks
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2022.3154719
– volume: 31
  start-page: 1235
  year: 2019
  ident: 10.1016/j.bspc.2022.104351_b0155
  article-title: A review of recurrent neural networks: Lstm cells and network architectures
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_01199
– volume: 35
  start-page: R1
  issue: 1
  year: 2014
  ident: 10.1016/j.bspc.2022.104351_b0050
  article-title: A review of signals used in sleep analysis
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/35/1/R1
– volume: 32
  start-page: 83
  year: 2011
  ident: 10.1016/j.bspc.2022.104351_b0115
  article-title: Multi-feature snore sound analysis in obstructive sleep apnea-hypopnea syndrome
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/32/1/006
– volume: 84
  start-page: 317
  year: 2021
  ident: 10.1016/j.bspc.2022.104351_b0025
  article-title: An OSAHS evaluation method based on multi-features acoustic analysis of snoring sounds
  publication-title: Sleep Med.
  doi: 10.1016/j.sleep.2021.06.012
– volume: 44
  year: 2021
  ident: 10.1016/j.bspc.2022.104351_b0040
  article-title: Metrics of sleep apnea severity: Beyond the apnea-hypopnea index
  publication-title: Sleep
  doi: 10.1093/sleep/zsab030
– ident: 10.1016/j.bspc.2022.104351_b0170
– volume: 185
  start-page: 108429
  year: 2022
  ident: 10.1016/j.bspc.2022.104351_b0045
  article-title: Effective feature selection based on fisher ratio for snoring recognition using different validation methods
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2021.108429
– ident: 10.1016/j.bspc.2022.104351_b0140
– volume: 8
  start-page: 22641
  year: 2020
  ident: 10.1016/j.bspc.2022.104351_b0200
  article-title: Sleep Apnea Severity Estimation from Tracheal Movements Using a Deep Learning Model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2969227
– volume: 206
  start-page: 106119
  year: 2021
  ident: 10.1016/j.bspc.2022.104351_b0070
  article-title: A novel approach to diagnose sleep apnea using enhanced frequency extraction network
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2021.106119
– volume: 25
  start-page: 4185
  year: 2021
  ident: 10.1016/j.bspc.2022.104351_b0080
  article-title: Estimation of Apnea-Hypopnea Index Using Deep Learning on 3-D Craniofacial Scans
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2021.3078127
– volume: 323
  start-page: 1380
  year: 2020
  ident: 10.1016/j.bspc.2022.104351_b0005
  article-title: Diagnosis and Management of Obstructive Sleep Apnea: A Review
  publication-title: JAMA – J. Am. Med. Assoc.
  doi: 10.1001/jama.2020.3514
– volume: 291
  start-page: 2013
  issue: 16
  year: 2004
  ident: 10.1016/j.bspc.2022.104351_b0010
  article-title: Risk Factors for Obstructive Sleep Apnea in Adults
  publication-title: JAMA
  doi: 10.1001/jama.291.16.2013
– volume: 15
  start-page: 1616
  year: 2020
  ident: 10.1016/j.bspc.2022.104351_b0165
  article-title: Fusing MFCC and LPC features using 1D Triplet CNN for speaker recognition in severely degraded audio signals
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2019.2941773
– volume: 4
  year: 2021
  ident: 10.1016/j.bspc.2022.104351_b0190
  article-title: Prediction of obstructive sleep apnea using Fast Fourier Transform of overnight breath recordings
  publication-title: Mach. Learn. Appl.
– volume: 127
  start-page: 15
  year: 2019
  ident: 10.1016/j.bspc.2022.104351_b0085
  article-title: A deep learning-based decision support system for diagnosis of OSAS using PTT signals
  publication-title: Med. Hypotheses
  doi: 10.1016/j.mehy.2019.03.026
SSID ssj0048714
Score 2.4243937
Snippet Snoring is a typical syndrome of obstructive sleep apnea hypopnea syndrome (OSAHS). The acoustic analysis of snoring sound has been proved potential to develop...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104351
SubjectTerms LSTM
Obstructive sleep apnea hypopnea syndrome
Snoring sounds
Transfer learning
VGG19
Title Automatically detecting apnea-hypopnea snoring signal based on VGG19 + LSTM
URI https://dx.doi.org/10.1016/j.bspc.2022.104351
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbsIwELUQvbSHqqtKF-RDbyglTuwsR4QKdIELUHGLbMdRqVASlXDg0m_hW_iyerKgVqo49BYlM1E0smfJPL9B6J7TyCEkFIYwpS5QpMkMoQshw6cw7gj6YBx-DQxHzmBKn2dsVkPd6iwMwCpL31_49Nxbl3fapTXb6XzeHutc2vF0dWJBC19nCXCCnboA63v42sE8dD6e83uDsAHS5cGZAuMllinQGFoWtDptRv4OTj8CTu8EHZeZIu4UH3OKaio-Q0c_-APP0bCzypKcc5UvFmscKugI6CeYp7Hixvs6TeACL-McZocBrKFfCZErxEmM3_p94m83re3mdTwZXqBp73HSHRjlfARD2qaZGcJigkQ-pYJxy5fc5Yy6kaIe0zFGFyrKDyO9vTxqW6ZHLemFDiXCZtRStjLt0L5E9TiJ1RXC0hOhlJHe4ULqEs_37FAQl5uOGRHChdNApDJMIEvycJhhsQgqlNhHAMYMwJhBYcwGau100oI6Y680q-wd_FoAgfbte_Su_6l3gw5hcnwBwL5F9exzpe50fpGJZr6Amuig8_QyGH0D4TDNrg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b8IwED5RGNoOVZ8qfWbohiLixAnJiFB5FMICVGyR7TgqFQpRCQP_ht_CL6uPJBWVKoZukeOzok_2PXLn7wBeGI0cQkKuc0OoAEUYts5VIKR7FNsdYR6M4a8Bf-h0J_Rtak9L0CruwmBZZa77M52-09b5SD1Hs57MZvWR8qUdV0UnJqbwlZdwBBVkp6JlqDR7_e6wUMjKJd9RfON8HQXyuzNZmRdfJshkaJqY7bRs8rd92rM57XM4y51FrZl9zwWUZHwJp3sUglfgN1fpYke7yubztRZKTAqoNxpLYsn0j3WywAdtGe8q7TSs11BLovEKtUWsvXc6xNtuatvNYDT2r2HSfh23unreIkEXlmGkOjdtTiKPUm4z0xOswRQCkaSurcyMilWkF0bqhLnUMg2XmsINHUq4ZVNTWtKwQusGyvEilregCZeHQkTqkHOhojzPtUJOGsxwjIgQxp0qkAKYQOT84djGYh4UhWKfAYIZIJhBBmYVaj8yScaecXC2XeAd_NoDgVLvB-Tu_in3DMfdsT8IBr1h_x5OsJF8Vo_9AOX0ayUflbuR8qd8O30DAjrQXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatically+detecting+apnea-hypopnea+snoring+signal+based+on+VGG19%C2%A0%2B%C2%A0LSTM&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Ding%2C+Li&rft.au=Peng%2C+Jianxin&rft.au=Song%2C+Lijuan&rft.au=Zhang%2C+Xiaowen&rft.date=2023-02-01&rft.issn=1746-8094&rft.volume=80&rft.spage=104351&rft_id=info:doi/10.1016%2Fj.bspc.2022.104351&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2022_104351
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon