Automatically detecting apnea-hypopnea snoring signal based on VGG19 + LSTM
Snoring is a typical syndrome of obstructive sleep apnea hypopnea syndrome (OSAHS). The acoustic analysis of snoring sound has been proved potential to develop a non-invasive approach for assisting diagnose OSAHS. In this work, a pre-trained VGG19 and the long short-term memory (LSTM) fused model wa...
Saved in:
Published in | Biomedical signal processing and control Vol. 80; p. 104351 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1746-8094 1746-8108 |
DOI | 10.1016/j.bspc.2022.104351 |
Cover
Loading…
Abstract | Snoring is a typical syndrome of obstructive sleep apnea hypopnea syndrome (OSAHS). The acoustic analysis of snoring sound has been proved potential to develop a non-invasive approach for assisting diagnose OSAHS. In this work, a pre-trained VGG19 and the long short-term memory (LSTM) fused model was proposed to classify snoring sounds of simple snorers and OSAHS patients and detect apnea-hypopnea snoring from the whole night recorded sounds of patients. Mel-spectrograms of snoring sounds were fed into the VGG19 + LSTM model to learn relatively distinguishable features. Compared with other fused models, the proposed VGG19 + LSTM model yielded the highest accuracy of 99.31 % in classifying simple snorers’ snoring and OSAHS patients’ snoring. For distinguishing normal snoring and apnea-hypopnea snoring of patients, the VGG19 + LSTM achieved 85.21 % and 66.29 % accuracies based on hold-out and leave-one-subject-out validation methods respectively. The estimated AHI highly correlated with PSG AHI with a Pearson correlation coefficient of 0.966 (p < 0.001). Results of the proposed model demonstrate that acoustic analysis of snoring sounds has great potential for screening sleep and diagnosing OSAHS. |
---|---|
AbstractList | Snoring is a typical syndrome of obstructive sleep apnea hypopnea syndrome (OSAHS). The acoustic analysis of snoring sound has been proved potential to develop a non-invasive approach for assisting diagnose OSAHS. In this work, a pre-trained VGG19 and the long short-term memory (LSTM) fused model was proposed to classify snoring sounds of simple snorers and OSAHS patients and detect apnea-hypopnea snoring from the whole night recorded sounds of patients. Mel-spectrograms of snoring sounds were fed into the VGG19 + LSTM model to learn relatively distinguishable features. Compared with other fused models, the proposed VGG19 + LSTM model yielded the highest accuracy of 99.31 % in classifying simple snorers’ snoring and OSAHS patients’ snoring. For distinguishing normal snoring and apnea-hypopnea snoring of patients, the VGG19 + LSTM achieved 85.21 % and 66.29 % accuracies based on hold-out and leave-one-subject-out validation methods respectively. The estimated AHI highly correlated with PSG AHI with a Pearson correlation coefficient of 0.966 (p < 0.001). Results of the proposed model demonstrate that acoustic analysis of snoring sounds has great potential for screening sleep and diagnosing OSAHS. |
ArticleNumber | 104351 |
Author | Song, Lijuan Zhang, Xiaowen Peng, Jianxin Ding, Li |
Author_xml | – sequence: 1 givenname: Li surname: Ding fullname: Ding, Li organization: School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China – sequence: 2 givenname: Jianxin surname: Peng fullname: Peng, Jianxin email: phjxpeng@163.com organization: School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China – sequence: 3 givenname: Lijuan surname: Song fullname: Song, Lijuan organization: State Key Laboratory of Respiratory Disease, Department of Otolaryngology-Head and Neck Surgery, Laboratory of ENT-HNS Disease, First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China – sequence: 4 givenname: Xiaowen surname: Zhang fullname: Zhang, Xiaowen organization: State Key Laboratory of Respiratory Disease, Department of Otolaryngology-Head and Neck Surgery, Laboratory of ENT-HNS Disease, First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China |
BookMark | eNp9kM1Kw0AUhQepYFt9AVfZS-L8JZmAm1K0Ci0urG6HyeSmTklnwkwU-jZ9lj6ZCdWNi67u4cB34XwTNLLOAkK3BCcEk-x-m5Sh1QnFlPYFZym5QGOS8ywWBIvRX8YFv0KTELYYc5ETPkar2VfndqozWjXNPqqgA90Zu4lUa0HFn_vWDSEK1vmhDmZjVROVKkAVORt9LBakOB7ujofl23p1jS5r1QS4-b1T9P70uJ4_x8vXxct8tow1w7iLS5qWpC44L1NFC61ylfK8Bi5SWhQZzaCo6owJwRnFglMtqoyTkqWcAgPMKjZF4vRXexeCh1pq0_UjnO28Mo0kWA5a5FYOWuSgRZ609Cj9h7be7JTfn4ceThD0o74NeBm0AauhMr73JStnzuE_U61-BQ |
CitedBy_id | crossref_primary_10_3390_s24237782 crossref_primary_10_1016_j_bspc_2024_107472 crossref_primary_10_1007_s13246_023_01345_1 crossref_primary_10_1109_TIM_2023_3312698 crossref_primary_10_17780_ksujes_1205807 crossref_primary_10_3390_electronics13132567 crossref_primary_10_1016_j_amjoto_2023_103964 crossref_primary_10_3389_fnins_2024_1336307 crossref_primary_10_1007_s40747_024_01648_0 crossref_primary_10_1007_s13755_024_00320_8 crossref_primary_10_1088_1361_6579_ad4953 crossref_primary_10_1016_j_apacoust_2023_109811 |
Cites_doi | 10.1097/01.mcp.0000143689.86819.c2 10.1155/2020/8864863 10.1109/JBHI.2020.3012666 10.1111/jsr.13490 10.21037/jtd-20-804 10.1109/TITB.2010.2087386 10.1007/s00405-016-4335-4 10.1016/j.smrv.2016.07.002 10.1007/s13246-016-0507-1 10.1016/j.cmpb.2017.01.001 10.1016/j.energy.2019.05.230 10.1183/09031936.01.17508380 10.1159/000335839 10.1007/s42979-020-0114-9 10.1001/jamaoto.2022.0244 10.1016/j.eswa.2020.114513 10.1038/s41597-021-00977-w 10.1016/j.bspc.2021.103238 10.5665/sleep.2092 10.1016/j.compbiomed.2018.06.028 10.1088/1361-6579/ab9e7b 10.1016/j.smrv.2009.06.002 10.1109/JBHI.2022.3154719 10.1162/neco_a_01199 10.1088/0967-3334/35/1/R1 10.1088/0967-3334/32/1/006 10.1016/j.sleep.2021.06.012 10.1093/sleep/zsab030 10.1016/j.apacoust.2021.108429 10.1109/ACCESS.2020.2969227 10.1016/j.cmpb.2021.106119 10.1109/JBHI.2021.3078127 10.1001/jama.2020.3514 10.1001/jama.291.16.2013 10.1109/TIFS.2019.2941773 10.1016/j.mehy.2019.03.026 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2022.104351 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1746-8108 |
ExternalDocumentID | 10_1016_j_bspc_2022_104351 S1746809422008059 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c300t-b25b1f944b5a29ca7a547fe485299626e9df63884320842c8d641b3542e3e03d3 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Tue Jul 01 01:34:15 EDT 2025 Thu Apr 24 23:00:59 EDT 2025 Fri Feb 23 02:39:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Obstructive sleep apnea hypopnea syndrome LSTM VGG19 Snoring sounds Transfer learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c300t-b25b1f944b5a29ca7a547fe485299626e9df63884320842c8d641b3542e3e03d3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_bspc_2022_104351 crossref_primary_10_1016_j_bspc_2022_104351 elsevier_sciencedirect_doi_10_1016_j_bspc_2022_104351 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2023 2023-02-00 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
PublicationDecade | 2020 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Kim, Cho (b0150) 2019; 182 Young (b0010) 2004; 291 Molin, Molin, Dalpatadu, Singh (b0190) 2021; 4 Cho, Jung, Shin, Won, Rhee, Kim (b0195) 2022; 148 Luo, Liu, Gao, Wang, Zhu, Shi, Hei, Ren (b0120) 2020; 41 Silveira, Cardoso, Lourenço, Ahlström (b0210) 2019; 13 Malhotra, Ayappa, Ayas, Collop, Kirsch, Mcardle, Mehra, Pack, Punjabi, White, Gottlieb (b0040) 2021; 44 Pombo, Garcia, Bousson (b0060) 2017; 140 Shen, Cheng, Li, Yue, Li, Dai, Yao (b0020) 2020; 2020 Wu, Pang, Zhao, Yue, Lei, Wang (b0070) 2021; 206 Yu, Si, Hu, Zhang (b0155) 2019; 31 Choi, Yoon, Kim, Kim, Kwon, Oh, Lee, Park (b0100) 2018; 100 Theckedath, Sedamkar (b0175) 2020; 1 Karunajeewa, Abeyratne, Hukins (b0115) 2011; 32 Arslan Tuncer, Akılotu, Toraman (b0085) 2019; 127 Senaratna, Perret, Lodge, Lowe, Campbell, Matheson, Hamilton, Dharmage (b0015) 2017; 34 Jiang, Peng, Song (b0025) 2021; 84 Jané, Solà-Soler, Fiz, Morera (b0110) 2000; 4 K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, (2014). http://arxiv.org/abs/1409.1556. Qian, Janott, Schmitt, Zhang, Heiser, Hemmert, Yamamoto, Schuller (b0055) 2020; 25 Gottlieb, Punjabi (b0005) 2020; 323 Koo, Kwon, Kim, Moon, Kim, Jung (b0030) 2017; 274 Pevernagie, Aarts, de Meyer (b0105) 2010; 14 H. Limin, W. Zhang, D. Shi, L. Huancheng, Estimation of apnea hypopnea index based on acoustic features of snoring, (2019). https://doi.org/10.12066/j.issn.1007-2861.1942. G. Bao, C. Guilleminault, Upper airway resistance syndrome-one decade later, 2004. Hanif, Leary, Schneider, Paulsen, Morse, Blackman, Schweitzer, Kushida, Liu, Jennum, Sorensen, Mignot (b0080) 2021; 25 W.D.R.S.L.-J.L.K.L. and L.F.-F. Jia Deng, ImageNet: a large-scale hierarchical image database, IEEE, 2009. Bsoul, Minn, Tamil (b0090) 2011; 15 Chowdhury, Ross (b0165) 2020; 15 Roebuck, Monasterio, Gederi, Osipov, Behar, Malhotra, Penzel, Clifford (b0050) 2014; 35 Cheng, Wang, Yue, Li, Shen, Shuai, Li, Dai (b0125) 2022; 71 Kang, Kim, Mariani, Cho, Winkelman, Park, Kang (b0095) 2020; 10 Hafezi, Montazeri, Saha, Zhu, Gavrilovic, Yadollahi, Taati (b0200) 2020; 8 Sun, Peng, Zhang, Song (b0045) 2022; 185 C. Guilleminault, Y. do Kim, S. Chowdhuri, M. Horita, M. Ohayon, C. Kushida, Sleep and daytime sleepiness in upper airway resistance syndrome compared to obstructive sleep apnoea syndrome, 2001. Yan, Liao, Yang, Sun, Nong, Li (b0145) 2021; 169 Wang, Peng, Song, Zhang (b0160) 2017; 40 Montazeri Ghahjaverestan, Saha, Kabir, Gavrilovic, Zhu, Yadollahi (b0075) 2022; 31 F. Chollet, Xception: Deep Learning with Depthwise Separable Convolutions, n.d. Tiron, Lyon, Kilroy, Osman, Kelly, O’Mahony, Lopes, Coffey, McMahon, Wren, Conway, Fox, Costello, Shouldice, Lederer, Fietze, Penzel (b0185) 2020; 12 C. Ittichaichareon, Speech recognition using MFCC, … Conference on Computer …. (2012) 135–138. https://doi.org/10.13140/RG.2.1.2598.3208. Pépin, Guillot, Tamisier, Lévy (b0215) 2012; 83 Ben-Israel, Tarasiuk, Zigel (b0065) 2012; 35 Korompili, Amfilochiou, Kokkalas, Mitilineos, Tatlas, Kouvaras, Kastanakis, Maniou, Potirakis (b0035) 2021; 8 Romero, Ma, Brown, Hill (b0205) 2022; 26 Choi (10.1016/j.bspc.2022.104351_b0100) 2018; 100 Montazeri Ghahjaverestan (10.1016/j.bspc.2022.104351_b0075) 2022; 31 Yu (10.1016/j.bspc.2022.104351_b0155) 2019; 31 Shen (10.1016/j.bspc.2022.104351_b0020) 2020; 2020 Tiron (10.1016/j.bspc.2022.104351_b0185) 2020; 12 10.1016/j.bspc.2022.104351_b0180 Pépin (10.1016/j.bspc.2022.104351_b0215) 2012; 83 Cho (10.1016/j.bspc.2022.104351_b0195) 2022; 148 Hafezi (10.1016/j.bspc.2022.104351_b0200) 2020; 8 Koo (10.1016/j.bspc.2022.104351_b0030) 2017; 274 Korompili (10.1016/j.bspc.2022.104351_b0035) 2021; 8 10.1016/j.bspc.2022.104351_b0130 Hanif (10.1016/j.bspc.2022.104351_b0080) 2021; 25 10.1016/j.bspc.2022.104351_b0135 Gottlieb (10.1016/j.bspc.2022.104351_b0005) 2020; 323 Pombo (10.1016/j.bspc.2022.104351_b0060) 2017; 140 Ben-Israel (10.1016/j.bspc.2022.104351_b0065) 2012; 35 Roebuck (10.1016/j.bspc.2022.104351_b0050) 2014; 35 Karunajeewa (10.1016/j.bspc.2022.104351_b0115) 2011; 32 Silveira (10.1016/j.bspc.2022.104351_b0210) 2019; 13 Kim (10.1016/j.bspc.2022.104351_b0150) 2019; 182 Molin (10.1016/j.bspc.2022.104351_b0190) 2021; 4 Romero (10.1016/j.bspc.2022.104351_b0205) 2022; 26 Jiang (10.1016/j.bspc.2022.104351_b0025) 2021; 84 Wu (10.1016/j.bspc.2022.104351_b0070) 2021; 206 Young (10.1016/j.bspc.2022.104351_b0010) 2004; 291 Pevernagie (10.1016/j.bspc.2022.104351_b0105) 2010; 14 Malhotra (10.1016/j.bspc.2022.104351_b0040) 2021; 44 Qian (10.1016/j.bspc.2022.104351_b0055) 2020; 25 Kang (10.1016/j.bspc.2022.104351_b0095) 2020; 10 Theckedath (10.1016/j.bspc.2022.104351_b0175) 2020; 1 Jané (10.1016/j.bspc.2022.104351_b0110) 2000; 4 Wang (10.1016/j.bspc.2022.104351_b0160) 2017; 40 Senaratna (10.1016/j.bspc.2022.104351_b0015) 2017; 34 10.1016/j.bspc.2022.104351_b0170 10.1016/j.bspc.2022.104351_b0220 10.1016/j.bspc.2022.104351_b0140 Bsoul (10.1016/j.bspc.2022.104351_b0090) 2011; 15 Cheng (10.1016/j.bspc.2022.104351_b0125) 2022; 71 Yan (10.1016/j.bspc.2022.104351_b0145) 2021; 169 Chowdhury (10.1016/j.bspc.2022.104351_b0165) 2020; 15 10.1016/j.bspc.2022.104351_b0225 Luo (10.1016/j.bspc.2022.104351_b0120) 2020; 41 Sun (10.1016/j.bspc.2022.104351_b0045) 2022; 185 Arslan Tuncer (10.1016/j.bspc.2022.104351_b0085) 2019; 127 |
References_xml | – volume: 44 year: 2021 ident: b0040 article-title: Metrics of sleep apnea severity: Beyond the apnea-hypopnea index publication-title: Sleep – volume: 13 start-page: 398 year: 2019 end-page: 405 ident: b0210 article-title: Importance of subject-dependent classification and imbalanced distributions in driver sleepiness detection in realistic conditions publication-title: IET Intel. Transport Syst. – volume: 12 start-page: 4476 year: 2020 end-page: 4495 ident: b0185 article-title: Screening for obstructive sleep apnea with novel hybrid acoustic smartphone app technology publication-title: J. Thorac. Dis. – volume: 84 start-page: 317 year: 2021 end-page: 323 ident: b0025 article-title: An OSAHS evaluation method based on multi-features acoustic analysis of snoring sounds publication-title: Sleep Med. – volume: 274 start-page: 1735 year: 2017 end-page: 1740 ident: b0030 article-title: Acoustic analysis of snoring sounds recorded with a smartphone according to obstruction site in OSAS patients publication-title: Eur. Arch. Otorhinolaryngol. – volume: 41 start-page: 075009 year: 2020 ident: b0120 article-title: A novel deep feature transfer-based OSA detection method using sleep sound signals publication-title: Physiol. Meas. – volume: 8 year: 2021 ident: b0035 article-title: PSG-Audio, a scored polysomnography dataset with simultaneous audio recordings for sleep apnea studies publication-title: Sci. Data – volume: 83 start-page: 559 year: 2012 end-page: 566 ident: b0215 article-title: The upper airway resistance syndrome publication-title: Respiration – reference: G. Bao, C. Guilleminault, Upper airway resistance syndrome-one decade later, 2004. – volume: 25 start-page: 1233 year: 2020 end-page: 1246 ident: b0055 article-title: Can Machine Learning Assist Locating the Excitation of Snore Sound? A Review publication-title: IEEE J. Biomed. Health Inform. – volume: 169 start-page: 114513 year: 2021 ident: b0145 article-title: Multi-hour and multi-site air quality index forecasting in Beijing using CNN, LSTM, CNN-LSTM, and spatiotemporal clustering publication-title: Expert Syst. Appl. – volume: 182 start-page: 72 year: 2019 end-page: 81 ident: b0150 article-title: Predicting residential energy consumption using CNN-LSTM neural networks publication-title: Energy. – volume: 15 start-page: 1616 year: 2020 end-page: 1629 ident: b0165 article-title: Fusing MFCC and LPC features using 1D Triplet CNN for speaker recognition in severely degraded audio signals publication-title: IEEE Trans. Inf. Forensics Secur. – volume: 31 start-page: 1235 year: 2019 end-page: 1270 ident: b0155 article-title: A review of recurrent neural networks: Lstm cells and network architectures publication-title: Neural Comput. – volume: 291 start-page: 2013 year: 2004 ident: b0010 article-title: Risk Factors for Obstructive Sleep Apnea in Adults publication-title: JAMA – volume: 2020 start-page: 1 year: 2020 end-page: 10 ident: b0020 article-title: Detection of snore from OSAHS patients based on deep learning publication-title: J. Healthc. Eng. – volume: 148 start-page: 515 year: 2022 ident: b0195 article-title: Evaluating Prediction Models of Sleep Apnea From Smartphone-Recorded Sleep Breathing Sounds publication-title: JAMA Otolaryngol. Head Neck Surg. – volume: 8 start-page: 22641 year: 2020 end-page: 22649 ident: b0200 article-title: Sleep Apnea Severity Estimation from Tracheal Movements Using a Deep Learning Model publication-title: IEEE Access – volume: 26 start-page: 2941 year: 2022 end-page: 2950 ident: b0205 article-title: Acoustic Screening for Obstructive Sleep Apnea in Home Environments Based on Deep Neural Networks publication-title: IEEE J. Biomed. Health Inform. – reference: H. Limin, W. Zhang, D. Shi, L. Huancheng, Estimation of apnea hypopnea index based on acoustic features of snoring, (2019). https://doi.org/10.12066/j.issn.1007-2861.1942. – reference: F. Chollet, Xception: Deep Learning with Depthwise Separable Convolutions, n.d. – volume: 15 start-page: 416 year: 2011 end-page: 427 ident: b0090 article-title: Apnea MedAssist: Real-time sleep apnea monitor using single-lead ECG publication-title: IEEE Trans. Inf Technol. Biomed. – reference: C. Ittichaichareon, Speech recognition using MFCC, … Conference on Computer …. (2012) 135–138. https://doi.org/10.13140/RG.2.1.2598.3208. – volume: 4 year: 2021 ident: b0190 article-title: Prediction of obstructive sleep apnea using Fast Fourier Transform of overnight breath recordings publication-title: Mach. Learn. Appl. – volume: 1 year: 2020 ident: b0175 article-title: Detecting Affect States Using VGG16, ResNet50 and SE-ResNet50 Networks publication-title: SN Comput. Sci. – reference: C. Guilleminault, Y. do Kim, S. Chowdhuri, M. Horita, M. Ohayon, C. Kushida, Sleep and daytime sleepiness in upper airway resistance syndrome compared to obstructive sleep apnoea syndrome, 2001. – reference: K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, (2014). http://arxiv.org/abs/1409.1556. – volume: 14 start-page: 131 year: 2010 end-page: 144 ident: b0105 article-title: The acoustics of snoring publication-title: Sleep Med. Rev. – volume: 35 start-page: R1 year: 2014 end-page: R57 ident: b0050 article-title: A review of signals used in sleep analysis publication-title: Physiol. Meas. – reference: W.D.R.S.L.-J.L.K.L. and L.F.-F. Jia Deng, ImageNet: a large-scale hierarchical image database, IEEE, 2009. – volume: 35 start-page: 1299 year: 2012 end-page: 1305 ident: b0065 article-title: Obstructive apnea hypopnea index estimation by analysis of nocturnal snoring signals in adults publication-title: Sleep – volume: 100 start-page: 123 year: 2018 end-page: 131 ident: b0100 article-title: Real-time apnea-hypopnea event detection during sleep by convolutional neural networks publication-title: Comput. Biol. Med. – volume: 4 start-page: 3129 year: 2000 end-page: 3131 ident: b0110 article-title: Automatic detection of snoring signals: Validation with simple snorers and OSAS patients publication-title: Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings. – volume: 71 start-page: 103238 year: 2022 ident: b0125 article-title: Automated sleep apnea detection in snoring signal using long short-term memory neural networks publication-title: Biomed. Signal Process. Control – volume: 323 start-page: 1380 year: 2020 end-page: 1400 ident: b0005 article-title: Diagnosis and Management of Obstructive Sleep Apnea: A Review publication-title: JAMA – J. Am. Med. Assoc. – volume: 31 year: 2022 ident: b0075 article-title: Sleep apnea severity based on estimated tidal volume and snoring features from tracheal signals publication-title: J. Sleep Res. – volume: 25 start-page: 4185 year: 2021 end-page: 4194 ident: b0080 article-title: Estimation of Apnea-Hypopnea Index Using Deep Learning on 3-D Craniofacial Scans publication-title: IEEE J. Biomed. Health Inform. – volume: 127 start-page: 15 year: 2019 end-page: 22 ident: b0085 article-title: A deep learning-based decision support system for diagnosis of OSAS using PTT signals publication-title: Med. Hypotheses – volume: 40 start-page: 127 year: 2017 end-page: 135 ident: b0160 article-title: Automatic snoring sounds detection from sleep sounds via multi-features analysis publication-title: Australas. Phys. Eng. Sci. Med. – volume: 32 start-page: 83 year: 2011 end-page: 97 ident: b0115 article-title: Multi-feature snore sound analysis in obstructive sleep apnea-hypopnea syndrome publication-title: Physiol. Meas. – volume: 206 start-page: 106119 year: 2021 ident: b0070 article-title: A novel approach to diagnose sleep apnea using enhanced frequency extraction network publication-title: Comput. Methods Programs Biomed. – volume: 34 start-page: 70 year: 2017 end-page: 81 ident: b0015 article-title: Prevalence of obstructive sleep apnea in the general population: A systematic review publication-title: Sleep Med. Rev. – volume: 140 start-page: 265 year: 2017 end-page: 274 ident: b0060 article-title: Classification techniques on computerized systems to predict and/or to detect Apnea: A systematic review publication-title: Comput. Methods Programs Biomed. – volume: 185 start-page: 108429 year: 2022 ident: b0045 article-title: Effective feature selection based on fisher ratio for snoring recognition using different validation methods publication-title: Appl. Acoust. – volume: 10 year: 2020 ident: b0095 article-title: Difference in spectral power density of sleep EEG between patients with simple snoring and those with obstructive sleep apnoea publication-title: Sci. Rep. – volume: 10 year: 2020 ident: 10.1016/j.bspc.2022.104351_b0095 article-title: Difference in spectral power density of sleep EEG between patients with simple snoring and those with obstructive sleep apnoea publication-title: Sci. Rep. – ident: 10.1016/j.bspc.2022.104351_b0220 doi: 10.1097/01.mcp.0000143689.86819.c2 – ident: 10.1016/j.bspc.2022.104351_b0135 – volume: 2020 start-page: 1 year: 2020 ident: 10.1016/j.bspc.2022.104351_b0020 article-title: Detection of snore from OSAHS patients based on deep learning publication-title: J. Healthc. Eng. doi: 10.1155/2020/8864863 – volume: 25 start-page: 1233 year: 2020 ident: 10.1016/j.bspc.2022.104351_b0055 article-title: Can Machine Learning Assist Locating the Excitation of Snore Sound? A Review publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2020.3012666 – volume: 31 year: 2022 ident: 10.1016/j.bspc.2022.104351_b0075 article-title: Sleep apnea severity based on estimated tidal volume and snoring features from tracheal signals publication-title: J. Sleep Res. doi: 10.1111/jsr.13490 – volume: 12 start-page: 4476 year: 2020 ident: 10.1016/j.bspc.2022.104351_b0185 article-title: Screening for obstructive sleep apnea with novel hybrid acoustic smartphone app technology publication-title: J. Thorac. Dis. doi: 10.21037/jtd-20-804 – volume: 15 start-page: 416 year: 2011 ident: 10.1016/j.bspc.2022.104351_b0090 article-title: Apnea MedAssist: Real-time sleep apnea monitor using single-lead ECG publication-title: IEEE Trans. Inf Technol. Biomed. doi: 10.1109/TITB.2010.2087386 – volume: 274 start-page: 1735 year: 2017 ident: 10.1016/j.bspc.2022.104351_b0030 article-title: Acoustic analysis of snoring sounds recorded with a smartphone according to obstruction site in OSAS patients publication-title: Eur. Arch. Otorhinolaryngol. doi: 10.1007/s00405-016-4335-4 – volume: 34 start-page: 70 year: 2017 ident: 10.1016/j.bspc.2022.104351_b0015 article-title: Prevalence of obstructive sleep apnea in the general population: A systematic review publication-title: Sleep Med. Rev. doi: 10.1016/j.smrv.2016.07.002 – volume: 40 start-page: 127 year: 2017 ident: 10.1016/j.bspc.2022.104351_b0160 article-title: Automatic snoring sounds detection from sleep sounds via multi-features analysis publication-title: Australas. Phys. Eng. Sci. Med. doi: 10.1007/s13246-016-0507-1 – volume: 140 start-page: 265 year: 2017 ident: 10.1016/j.bspc.2022.104351_b0060 article-title: Classification techniques on computerized systems to predict and/or to detect Apnea: A systematic review publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2017.01.001 – volume: 182 start-page: 72 year: 2019 ident: 10.1016/j.bspc.2022.104351_b0150 article-title: Predicting residential energy consumption using CNN-LSTM neural networks publication-title: Energy. doi: 10.1016/j.energy.2019.05.230 – ident: 10.1016/j.bspc.2022.104351_b0225 doi: 10.1183/09031936.01.17508380 – volume: 83 start-page: 559 year: 2012 ident: 10.1016/j.bspc.2022.104351_b0215 article-title: The upper airway resistance syndrome publication-title: Respiration doi: 10.1159/000335839 – volume: 13 start-page: 398 year: 2019 ident: 10.1016/j.bspc.2022.104351_b0210 article-title: Importance of subject-dependent classification and imbalanced distributions in driver sleepiness detection in realistic conditions publication-title: IET Intel. Transport Syst. – volume: 1 year: 2020 ident: 10.1016/j.bspc.2022.104351_b0175 article-title: Detecting Affect States Using VGG16, ResNet50 and SE-ResNet50 Networks publication-title: SN Comput. Sci. doi: 10.1007/s42979-020-0114-9 – volume: 4 start-page: 3129 year: 2000 ident: 10.1016/j.bspc.2022.104351_b0110 article-title: Automatic detection of snoring signals: Validation with simple snorers and OSAS patients publication-title: Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings. – volume: 148 start-page: 515 issue: 6 year: 2022 ident: 10.1016/j.bspc.2022.104351_b0195 article-title: Evaluating Prediction Models of Sleep Apnea From Smartphone-Recorded Sleep Breathing Sounds publication-title: JAMA Otolaryngol. Head Neck Surg. doi: 10.1001/jamaoto.2022.0244 – volume: 169 start-page: 114513 year: 2021 ident: 10.1016/j.bspc.2022.104351_b0145 article-title: Multi-hour and multi-site air quality index forecasting in Beijing using CNN, LSTM, CNN-LSTM, and spatiotemporal clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114513 – volume: 8 year: 2021 ident: 10.1016/j.bspc.2022.104351_b0035 article-title: PSG-Audio, a scored polysomnography dataset with simultaneous audio recordings for sleep apnea studies publication-title: Sci. Data doi: 10.1038/s41597-021-00977-w – volume: 71 start-page: 103238 year: 2022 ident: 10.1016/j.bspc.2022.104351_b0125 article-title: Automated sleep apnea detection in snoring signal using long short-term memory neural networks publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.103238 – ident: 10.1016/j.bspc.2022.104351_b0130 – volume: 35 start-page: 1299 year: 2012 ident: 10.1016/j.bspc.2022.104351_b0065 article-title: Obstructive apnea hypopnea index estimation by analysis of nocturnal snoring signals in adults publication-title: Sleep doi: 10.5665/sleep.2092 – volume: 100 start-page: 123 year: 2018 ident: 10.1016/j.bspc.2022.104351_b0100 article-title: Real-time apnea-hypopnea event detection during sleep by convolutional neural networks publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.06.028 – volume: 41 start-page: 075009 issue: 7 year: 2020 ident: 10.1016/j.bspc.2022.104351_b0120 article-title: A novel deep feature transfer-based OSA detection method using sleep sound signals publication-title: Physiol. Meas. doi: 10.1088/1361-6579/ab9e7b – ident: 10.1016/j.bspc.2022.104351_b0180 – volume: 14 start-page: 131 year: 2010 ident: 10.1016/j.bspc.2022.104351_b0105 article-title: The acoustics of snoring publication-title: Sleep Med. Rev. doi: 10.1016/j.smrv.2009.06.002 – volume: 26 start-page: 2941 issue: 7 year: 2022 ident: 10.1016/j.bspc.2022.104351_b0205 article-title: Acoustic Screening for Obstructive Sleep Apnea in Home Environments Based on Deep Neural Networks publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2022.3154719 – volume: 31 start-page: 1235 year: 2019 ident: 10.1016/j.bspc.2022.104351_b0155 article-title: A review of recurrent neural networks: Lstm cells and network architectures publication-title: Neural Comput. doi: 10.1162/neco_a_01199 – volume: 35 start-page: R1 issue: 1 year: 2014 ident: 10.1016/j.bspc.2022.104351_b0050 article-title: A review of signals used in sleep analysis publication-title: Physiol. Meas. doi: 10.1088/0967-3334/35/1/R1 – volume: 32 start-page: 83 year: 2011 ident: 10.1016/j.bspc.2022.104351_b0115 article-title: Multi-feature snore sound analysis in obstructive sleep apnea-hypopnea syndrome publication-title: Physiol. Meas. doi: 10.1088/0967-3334/32/1/006 – volume: 84 start-page: 317 year: 2021 ident: 10.1016/j.bspc.2022.104351_b0025 article-title: An OSAHS evaluation method based on multi-features acoustic analysis of snoring sounds publication-title: Sleep Med. doi: 10.1016/j.sleep.2021.06.012 – volume: 44 year: 2021 ident: 10.1016/j.bspc.2022.104351_b0040 article-title: Metrics of sleep apnea severity: Beyond the apnea-hypopnea index publication-title: Sleep doi: 10.1093/sleep/zsab030 – ident: 10.1016/j.bspc.2022.104351_b0170 – volume: 185 start-page: 108429 year: 2022 ident: 10.1016/j.bspc.2022.104351_b0045 article-title: Effective feature selection based on fisher ratio for snoring recognition using different validation methods publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2021.108429 – ident: 10.1016/j.bspc.2022.104351_b0140 – volume: 8 start-page: 22641 year: 2020 ident: 10.1016/j.bspc.2022.104351_b0200 article-title: Sleep Apnea Severity Estimation from Tracheal Movements Using a Deep Learning Model publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2969227 – volume: 206 start-page: 106119 year: 2021 ident: 10.1016/j.bspc.2022.104351_b0070 article-title: A novel approach to diagnose sleep apnea using enhanced frequency extraction network publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2021.106119 – volume: 25 start-page: 4185 year: 2021 ident: 10.1016/j.bspc.2022.104351_b0080 article-title: Estimation of Apnea-Hypopnea Index Using Deep Learning on 3-D Craniofacial Scans publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2021.3078127 – volume: 323 start-page: 1380 year: 2020 ident: 10.1016/j.bspc.2022.104351_b0005 article-title: Diagnosis and Management of Obstructive Sleep Apnea: A Review publication-title: JAMA – J. Am. Med. Assoc. doi: 10.1001/jama.2020.3514 – volume: 291 start-page: 2013 issue: 16 year: 2004 ident: 10.1016/j.bspc.2022.104351_b0010 article-title: Risk Factors for Obstructive Sleep Apnea in Adults publication-title: JAMA doi: 10.1001/jama.291.16.2013 – volume: 15 start-page: 1616 year: 2020 ident: 10.1016/j.bspc.2022.104351_b0165 article-title: Fusing MFCC and LPC features using 1D Triplet CNN for speaker recognition in severely degraded audio signals publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2019.2941773 – volume: 4 year: 2021 ident: 10.1016/j.bspc.2022.104351_b0190 article-title: Prediction of obstructive sleep apnea using Fast Fourier Transform of overnight breath recordings publication-title: Mach. Learn. Appl. – volume: 127 start-page: 15 year: 2019 ident: 10.1016/j.bspc.2022.104351_b0085 article-title: A deep learning-based decision support system for diagnosis of OSAS using PTT signals publication-title: Med. Hypotheses doi: 10.1016/j.mehy.2019.03.026 |
SSID | ssj0048714 |
Score | 2.4243937 |
Snippet | Snoring is a typical syndrome of obstructive sleep apnea hypopnea syndrome (OSAHS). The acoustic analysis of snoring sound has been proved potential to develop... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 104351 |
SubjectTerms | LSTM Obstructive sleep apnea hypopnea syndrome Snoring sounds Transfer learning VGG19 |
Title | Automatically detecting apnea-hypopnea snoring signal based on VGG19 + LSTM |
URI | https://dx.doi.org/10.1016/j.bspc.2022.104351 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbsIwELUQvbSHqqtKF-RDbyglTuwsR4QKdIELUHGLbMdRqVASlXDg0m_hW_iyerKgVqo49BYlM1E0smfJPL9B6J7TyCEkFIYwpS5QpMkMoQshw6cw7gj6YBx-DQxHzmBKn2dsVkPd6iwMwCpL31_49Nxbl3fapTXb6XzeHutc2vF0dWJBC19nCXCCnboA63v42sE8dD6e83uDsAHS5cGZAuMllinQGFoWtDptRv4OTj8CTu8EHZeZIu4UH3OKaio-Q0c_-APP0bCzypKcc5UvFmscKugI6CeYp7Hixvs6TeACL-McZocBrKFfCZErxEmM3_p94m83re3mdTwZXqBp73HSHRjlfARD2qaZGcJigkQ-pYJxy5fc5Yy6kaIe0zFGFyrKDyO9vTxqW6ZHLemFDiXCZtRStjLt0L5E9TiJ1RXC0hOhlJHe4ULqEs_37FAQl5uOGRHChdNApDJMIEvycJhhsQgqlNhHAMYMwJhBYcwGau100oI6Y680q-wd_FoAgfbte_Su_6l3gw5hcnwBwL5F9exzpe50fpGJZr6Amuig8_QyGH0D4TDNrg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b8IwED5RGNoOVZ8qfWbohiLixAnJiFB5FMICVGyR7TgqFQpRCQP_ht_CL6uPJBWVKoZukeOzok_2PXLn7wBeGI0cQkKuc0OoAEUYts5VIKR7FNsdYR6M4a8Bf-h0J_Rtak9L0CruwmBZZa77M52-09b5SD1Hs57MZvWR8qUdV0UnJqbwlZdwBBVkp6JlqDR7_e6wUMjKJd9RfON8HQXyuzNZmRdfJshkaJqY7bRs8rd92rM57XM4y51FrZl9zwWUZHwJp3sUglfgN1fpYke7yubztRZKTAqoNxpLYsn0j3WywAdtGe8q7TSs11BLovEKtUWsvXc6xNtuatvNYDT2r2HSfh23unreIkEXlmGkOjdtTiKPUm4z0xOswRQCkaSurcyMilWkF0bqhLnUMg2XmsINHUq4ZVNTWtKwQusGyvEilregCZeHQkTqkHOhojzPtUJOGsxwjIgQxp0qkAKYQOT84djGYh4UhWKfAYIZIJhBBmYVaj8yScaecXC2XeAd_NoDgVLvB-Tu_in3DMfdsT8IBr1h_x5OsJF8Vo_9AOX0ayUflbuR8qd8O30DAjrQXw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatically+detecting+apnea-hypopnea+snoring+signal+based+on+VGG19%C2%A0%2B%C2%A0LSTM&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Ding%2C+Li&rft.au=Peng%2C+Jianxin&rft.au=Song%2C+Lijuan&rft.au=Zhang%2C+Xiaowen&rft.date=2023-02-01&rft.issn=1746-8094&rft.volume=80&rft.spage=104351&rft_id=info:doi/10.1016%2Fj.bspc.2022.104351&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2022_104351 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |