Automatically detecting apnea-hypopnea snoring signal based on VGG19 + LSTM
Snoring is a typical syndrome of obstructive sleep apnea hypopnea syndrome (OSAHS). The acoustic analysis of snoring sound has been proved potential to develop a non-invasive approach for assisting diagnose OSAHS. In this work, a pre-trained VGG19 and the long short-term memory (LSTM) fused model wa...
Saved in:
Published in | Biomedical signal processing and control Vol. 80; p. 104351 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Snoring is a typical syndrome of obstructive sleep apnea hypopnea syndrome (OSAHS). The acoustic analysis of snoring sound has been proved potential to develop a non-invasive approach for assisting diagnose OSAHS. In this work, a pre-trained VGG19 and the long short-term memory (LSTM) fused model was proposed to classify snoring sounds of simple snorers and OSAHS patients and detect apnea-hypopnea snoring from the whole night recorded sounds of patients. Mel-spectrograms of snoring sounds were fed into the VGG19 + LSTM model to learn relatively distinguishable features. Compared with other fused models, the proposed VGG19 + LSTM model yielded the highest accuracy of 99.31 % in classifying simple snorers’ snoring and OSAHS patients’ snoring. For distinguishing normal snoring and apnea-hypopnea snoring of patients, the VGG19 + LSTM achieved 85.21 % and 66.29 % accuracies based on hold-out and leave-one-subject-out validation methods respectively. The estimated AHI highly correlated with PSG AHI with a Pearson correlation coefficient of 0.966 (p < 0.001). Results of the proposed model demonstrate that acoustic analysis of snoring sounds has great potential for screening sleep and diagnosing OSAHS. |
---|---|
ISSN: | 1746-8094 1746-8108 |
DOI: | 10.1016/j.bspc.2022.104351 |