Heterogeneous alkaline earth metal–transition metal bimetallic catalysts for synthesis of biodiesel from low grade unrefined feedstock

A bimetallic alkaline earth metal–transition metal oxide, synthesized through a method of direct low-temperature decomposition of the bimetallic complex, is reported for the synthesis of biodiesel. Due to the high phase purity of the Ca/Fe catalytic system and its catalytic stability and robustness,...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 5; no. 102; pp. 83748 - 83756
Main Authors Kwong, Tsz-Lung, Yung, Ka-Fu
Format Journal Article
LanguageEnglish
Published 2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A bimetallic alkaline earth metal–transition metal oxide, synthesized through a method of direct low-temperature decomposition of the bimetallic complex, is reported for the synthesis of biodiesel. Due to the high phase purity of the Ca/Fe catalytic system and its catalytic stability and robustness, the Ca/Fe catalyst was selected for further investigation. A transesterification conversion of 99.5% could be achieved in 1 h under the optimal conditions: feedstock to methanol, 1 : 20; catalyst loading, 6 wt%; temperature, 120 °C. ANOVA tests suggested that the reaction temperature was discerned as the most prominent factor which contributed 82.84% to the overall catalytic feedstock conversion. In addition, the Ca/Fe catalytic system demonstrated a high FFA tolerance of 2 wt% and a water tolerance of 1 wt% with remarkable catalytic activity in one-step biodiesel synthesis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2046-2069
2046-2069
DOI:10.1039/C5RA13819A