FGFR2 fusion/rearrangement analysis in intrahepatic cholangiocarcinoma using DNA/RNA-based NGS and FISH
Patients with intrahepatic cholangiocarcinoma (iCCA) harboring FGFR2 fusion/rearrangement benefit from targeted therapies, highlighting the need for reliable testing strategies to identify FGFR2 alterations. We assessed 226 iCCA cases using RNA-based NGS, DNA-based NGS, and break-apart FISH to evalu...
Saved in:
Published in | Virchows Archiv : an international journal of pathology |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
08.04.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0945-6317 1432-2307 1432-2307 |
DOI | 10.1007/s00428-025-04067-9 |
Cover
Abstract | Patients with intrahepatic cholangiocarcinoma (iCCA) harboring FGFR2 fusion/rearrangement benefit from targeted therapies, highlighting the need for reliable testing strategies to identify FGFR2 alterations. We assessed 226 iCCA cases using RNA-based NGS, DNA-based NGS, and break-apart FISH to evaluate the effectiveness of these methods in detecting FGFR2 fusion/rearrangement. The detection rates for FGFR2 fusion/rearrangement were 9.7% (22/226) for RNA-based NGS, 7.1% (16/226) for DNA-based NGS, and 10.2% (23/226) for FISH. Among the 26 FGFR2 fusion/rearrangement-positive cases identified by any method, only 15 (57.7%) were positive by all three techniques, yielding a concordance rate of 95.1% (215/226). RNA-based NGS confirmed oncogenic FGFR2 fusion in 81% (21/26) of positive cases and identified five novel oncogenic fusions. Thirty-five percent (6/17) of the partner genes were located on chromosome 10, with BICC1 being the most common fusion partner, while the rest were distributed across the other 9 chromosomes. FISH demonstrated a sensitivity of 95.2% and specificity of 98.5%, compared to oncogenic FGFR2 fusions confirmed by RNA-based NGS, while DNA-based NGS exhibited a sensitivity of 71.4% and specificity of 99.5%, identifying FGFR2 mutations in 4 cases. FGFR2-FISH positive cases displayed no significant heterogeneity in positive cell distribution. Oncogenic FGFR2 fusion/rearrangement was associated with small duct type iCCA, especially in cases with positive serum HBsAg and absent cholangiolocarcinoma components and peripheral liver steatosis. This study provides a comprehensive comparison of three assays for detecting FGFR2 fusion/rearrangement, along with clinicopathologic characterization of oncogenic FGFR2 fusion in iCCA. |
---|---|
AbstractList | Patients with intrahepatic cholangiocarcinoma (iCCA) harboring FGFR2 fusion/rearrangement benefit from targeted therapies, highlighting the need for reliable testing strategies to identify FGFR2 alterations. We assessed 226 iCCA cases using RNA-based NGS, DNA-based NGS, and break-apart FISH to evaluate the effectiveness of these methods in detecting FGFR2 fusion/rearrangement. The detection rates for FGFR2 fusion/rearrangement were 9.7% (22/226) for RNA-based NGS, 7.1% (16/226) for DNA-based NGS, and 10.2% (23/226) for FISH. Among the 26 FGFR2 fusion/rearrangement-positive cases identified by any method, only 15 (57.7%) were positive by all three techniques, yielding a concordance rate of 95.1% (215/226). RNA-based NGS confirmed oncogenic FGFR2 fusion in 81% (21/26) of positive cases and identified five novel oncogenic fusions. Thirty-five percent (6/17) of the partner genes were located on chromosome 10, with BICC1 being the most common fusion partner, while the rest were distributed across the other 9 chromosomes. FISH demonstrated a sensitivity of 95.2% and specificity of 98.5%, compared to oncogenic FGFR2 fusions confirmed by RNA-based NGS, while DNA-based NGS exhibited a sensitivity of 71.4% and specificity of 99.5%, identifying FGFR2 mutations in 4 cases. FGFR2-FISH positive cases displayed no significant heterogeneity in positive cell distribution. Oncogenic FGFR2 fusion/rearrangement was associated with small duct type iCCA, especially in cases with positive serum HBsAg and absent cholangiolocarcinoma components and peripheral liver steatosis. This study provides a comprehensive comparison of three assays for detecting FGFR2 fusion/rearrangement, along with clinicopathologic characterization of oncogenic FGFR2 fusion in iCCA.Patients with intrahepatic cholangiocarcinoma (iCCA) harboring FGFR2 fusion/rearrangement benefit from targeted therapies, highlighting the need for reliable testing strategies to identify FGFR2 alterations. We assessed 226 iCCA cases using RNA-based NGS, DNA-based NGS, and break-apart FISH to evaluate the effectiveness of these methods in detecting FGFR2 fusion/rearrangement. The detection rates for FGFR2 fusion/rearrangement were 9.7% (22/226) for RNA-based NGS, 7.1% (16/226) for DNA-based NGS, and 10.2% (23/226) for FISH. Among the 26 FGFR2 fusion/rearrangement-positive cases identified by any method, only 15 (57.7%) were positive by all three techniques, yielding a concordance rate of 95.1% (215/226). RNA-based NGS confirmed oncogenic FGFR2 fusion in 81% (21/26) of positive cases and identified five novel oncogenic fusions. Thirty-five percent (6/17) of the partner genes were located on chromosome 10, with BICC1 being the most common fusion partner, while the rest were distributed across the other 9 chromosomes. FISH demonstrated a sensitivity of 95.2% and specificity of 98.5%, compared to oncogenic FGFR2 fusions confirmed by RNA-based NGS, while DNA-based NGS exhibited a sensitivity of 71.4% and specificity of 99.5%, identifying FGFR2 mutations in 4 cases. FGFR2-FISH positive cases displayed no significant heterogeneity in positive cell distribution. Oncogenic FGFR2 fusion/rearrangement was associated with small duct type iCCA, especially in cases with positive serum HBsAg and absent cholangiolocarcinoma components and peripheral liver steatosis. This study provides a comprehensive comparison of three assays for detecting FGFR2 fusion/rearrangement, along with clinicopathologic characterization of oncogenic FGFR2 fusion in iCCA. Patients with intrahepatic cholangiocarcinoma (iCCA) harboring FGFR2 fusion/rearrangement benefit from targeted therapies, highlighting the need for reliable testing strategies to identify FGFR2 alterations. We assessed 226 iCCA cases using RNA-based NGS, DNA-based NGS, and break-apart FISH to evaluate the effectiveness of these methods in detecting FGFR2 fusion/rearrangement. The detection rates for FGFR2 fusion/rearrangement were 9.7% (22/226) for RNA-based NGS, 7.1% (16/226) for DNA-based NGS, and 10.2% (23/226) for FISH. Among the 26 FGFR2 fusion/rearrangement-positive cases identified by any method, only 15 (57.7%) were positive by all three techniques, yielding a concordance rate of 95.1% (215/226). RNA-based NGS confirmed oncogenic FGFR2 fusion in 81% (21/26) of positive cases and identified five novel oncogenic fusions. Thirty-five percent (6/17) of the partner genes were located on chromosome 10, with BICC1 being the most common fusion partner, while the rest were distributed across the other 9 chromosomes. FISH demonstrated a sensitivity of 95.2% and specificity of 98.5%, compared to oncogenic FGFR2 fusions confirmed by RNA-based NGS, while DNA-based NGS exhibited a sensitivity of 71.4% and specificity of 99.5%, identifying FGFR2 mutations in 4 cases. FGFR2-FISH positive cases displayed no significant heterogeneity in positive cell distribution. Oncogenic FGFR2 fusion/rearrangement was associated with small duct type iCCA, especially in cases with positive serum HBsAg and absent cholangiolocarcinoma components and peripheral liver steatosis. This study provides a comprehensive comparison of three assays for detecting FGFR2 fusion/rearrangement, along with clinicopathologic characterization of oncogenic FGFR2 fusion in iCCA. |
Author | Zhang, Xin Huang, Xiaoyong Jiang, Zhengzeng Wang, Yulin Shi, Guoming Xue, Cheng Hou, Yingyong Huang, Xiaowu Han, Jing Ji, Yuan Luan, Lijuan Bai, Qianming Huang, Kai |
Author_xml | – sequence: 1 givenname: Xin surname: Zhang fullname: Zhang, Xin – sequence: 2 givenname: Qianming surname: Bai fullname: Bai, Qianming – sequence: 3 givenname: Yulin surname: Wang fullname: Wang, Yulin – sequence: 4 givenname: Zhengzeng surname: Jiang fullname: Jiang, Zhengzeng – sequence: 5 givenname: Jing surname: Han fullname: Han, Jing – sequence: 6 givenname: Cheng surname: Xue fullname: Xue, Cheng – sequence: 7 givenname: Kai surname: Huang fullname: Huang, Kai – sequence: 8 givenname: Lijuan surname: Luan fullname: Luan, Lijuan – sequence: 9 givenname: Xiaoyong surname: Huang fullname: Huang, Xiaoyong – sequence: 10 givenname: Xiaowu surname: Huang fullname: Huang, Xiaowu – sequence: 11 givenname: Guoming surname: Shi fullname: Shi, Guoming – sequence: 12 givenname: Yingyong surname: Hou fullname: Hou, Yingyong – sequence: 13 givenname: Yuan orcidid: 0000-0002-2631-9082 surname: Ji fullname: Ji, Yuan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40198372$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kU1PwzAMhiM0xD7gD3BAPXIJc5K2aY_TYB_SNKQNzlGaulvRmo6kO-zfExggWfbl8SvLz5D0bGuRkHsGTwxAjj1AzDMKPKEQQyppfkUGLBaccgGyRwaQxwlNBZN9MvT-A4CzjKU3pB8DyzMh-YDsZvPZhkfVydetHTvUzmm7wwZtF2mrD2df-6i2oTqn93jUXW0is28Pgapbo52pbdvoKOzbXfS8now36wkttMcyWs-3IaOMZsvt4pZcV_rg8e53jsj77OVtuqCr1_lyOllRIwA6KqHiuYAUAXOTVpiCTpgROmZSFGVWxaGzQpcghK6SJMGCyRQxZVWpc1ZwMSKPl9yjaz9P6DvV1N7gIdyL7ckrwbIMMg5CBvThFz0VDZbq6OpGu7P6e04A-AUwrvXeYfWPMFDfBtTFgAoG1I8BlYsvmrl3tA |
Cites_doi | 10.1038/ncomms7087 10.3390/cancers11091309 10.1002/hep.30289 10.1186/s12967-020-02437-2 10.1038/s41416-022-01908-1 10.1038/s41419-021-03548-4 10.1016/S0140-6736(21)00153-7 10.1158/2159-8290.CD-20-0766 10.1016/S1470-2045(20)30109-1 10.1016/j.jmoldx.2011.06.007 10.1177/10781552231171079 10.1111/hepr.12605 10.1158/2159-8290.CD-20-1669 10.6004/jnccn.2023.0035 10.1038/ng.3375 10.21037/hbsn.2017.01.06 10.1080/13543784.2021.1995355 10.3892/ijmm.2016.2620 10.1016/j.jtho.2018.05.041 10.1158/1078-0432.CCR-14-2329 10.1002/hep.26890 10.1200/PO.17.00018 10.1097/PAS.0000000000000670 10.1093/jnci/djad046 10.1007/s40265-020-01330-y 10.1200/PO.18.00414 10.1016/j.cytogfr.2005.01.001 10.1016/j.ccell.2021.12.006 10.21037/hbsn-21-75 10.1111/his.14417 10.1093/humrep/14.5.1213 10.1016/j.plabm.2020.e00173 10.3389/fonc.2022.906778 10.1016/j.jmoldx.2018.10.003 |
ContentType | Journal Article |
Copyright | 2025. The Author(s). |
Copyright_xml | – notice: 2025. The Author(s). |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1007/s00428-025-04067-9 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1432-2307 |
ExternalDocumentID | 40198372 10_1007_s00428_025_04067_9 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 81400645 – fundername: Science and Technology Commission of Shanghai Municipality grantid: 22JC1403002 – fundername: National Key Clinical Specialty Discipline Construction Program of China grantid: YWP2023-001 |
GroupedDBID | --- .86 .VR 06C 06D 0R~ 0VY 1N0 203 29Q 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5RE 5VS 67Z 6NX 78A 7RV 7X7 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABOCM ABPLI ABQBU ABRTQ ABSXP ABTEG ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSTC ACZOJ ADBBV ADHIR ADIMF ADJJI ADKNI ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHMBA AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AZFZN B-. BA0 BENPR BGNMA BHPHI BMSDO BSONS CITATION CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI ESBYG F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LAS LLZTM M4Y M7P MA- N9A NAPCQ NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P9S PF0 PT4 PT5 QOK QOR QOS R89 R9I RHV RNS RPX RRX RSV S16 S1Z S27 S37 S3B SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZ9 SZN T13 TSG TSK TSV TT1 TUC U2A U9L UG4 UOJIU UTJUX VC2 W23 W48 WJK WK8 YLTOR Z45 ZMTXR ZOVNA ~EX NPM 7X8 |
ID | FETCH-LOGICAL-c300t-70f29306e0e9c6fe60a51c3a4173bd8f43bd1bad033af555eb176ee61fda91b23 |
ISSN | 0945-6317 1432-2307 |
IngestDate | Fri Sep 05 17:42:23 EDT 2025 Thu Apr 10 10:49:37 EDT 2025 Tue Aug 05 12:08:20 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Tyrosine kinase Molecular detection Cholangiolocarcinoma Target therapy FGFR2 |
Language | English |
License | 2025. The Author(s). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c300t-70f29306e0e9c6fe60a51c3a4173bd8f43bd1bad033af555eb176ee61fda91b23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2631-9082 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s00428-025-04067-9.pdf |
PMID | 40198372 |
PQID | 3188082037 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3188082037 pubmed_primary_40198372 crossref_primary_10_1007_s00428_025_04067_9 |
PublicationCentury | 2000 |
PublicationDate | 2025-04-08 |
PublicationDateYYYYMMDD | 2025-04-08 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Virchows Archiv : an international journal of pathology |
PublicationTitleAlternate | Virchows Arch |
PublicationYear | 2025 |
References | K Wang (4067_CR2) 2017; 6 KD Davies (4067_CR30) 2018; 13 Y Arai (4067_CR13) 2014; 59 S Mosadeghi (4067_CR6) 2016; 46 M Katoh (4067_CR8) 2016; 38 J Cao (4067_CR14) 2020; 4 GK Abou-Alfa (4067_CR16) 2020; 21 H Nakamura (4067_CR11) 2015; 47 VP Eswarakumar (4067_CR23) 2005; 16 IM Silverman (4067_CR33) 2021; 11 JM Cleary (4067_CR9) 2021; 11 DL Evers (4067_CR29) 2011; 13 M Kirchner (4067_CR26) 2019; 11 S Barua (4067_CR28) 2020; 21 H Nguyen Canh (4067_CR36) 2021; 79 MI Evans (4067_CR34) 1999; 14 AE Sirica (4067_CR5) 2019; 69 SM Hoy (4067_CR21) 2020; 80 A Hayashi (4067_CR35) 2016; 40 4067_CR1 RA Blidner (4067_CR27) 2019; 21 T Rausch (4067_CR20) 2012; 28 S Braun (4067_CR32) 2021; 30 K Spencer (4067_CR7) 2023; 115 4067_CR31 Y Zou (4067_CR19) 2023; 11 L Dong (4067_CR17) 2022; 40 O Neumann (4067_CR25) 2022; 127 D Sia (4067_CR15) 2015; 6 L An (4067_CR4) 2023; 12 JW Valle (4067_CR3) 2021; 397 M Touat (4067_CR10) 2015; 21 E Lodl (4067_CR22) 2023; 29 X Pu (4067_CR24) 2021; 12 L Wang (4067_CR12) 2020; 18 4067_CR18 |
References_xml | – volume: 6 start-page: 6087 issue: 1 year: 2015 ident: 4067_CR15 publication-title: Nat Commun doi: 10.1038/ncomms7087 – volume: 11 start-page: 1309 issue: 9 year: 2019 ident: 4067_CR26 publication-title: Cancers doi: 10.3390/cancers11091309 – volume: 69 start-page: 1803 issue: 4 year: 2019 ident: 4067_CR5 publication-title: Hepatology doi: 10.1002/hep.30289 – volume: 18 start-page: 273 issue: 1 year: 2020 ident: 4067_CR12 publication-title: J Transl Med doi: 10.1186/s12967-020-02437-2 – volume: 127 start-page: 1540 issue: 8 year: 2022 ident: 4067_CR25 publication-title: Br J Cancer doi: 10.1038/s41416-022-01908-1 – volume: 12 start-page: 256 issue: 3 year: 2021 ident: 4067_CR24 publication-title: Cell Death Dis doi: 10.1038/s41419-021-03548-4 – volume: 11 start-page: 1355 issue: 6 year: 2023 ident: 4067_CR19 publication-title: J Clin Transl Hepatol – volume: 397 start-page: 428 issue: 10272 year: 2021 ident: 4067_CR3 publication-title: Lancet doi: 10.1016/S0140-6736(21)00153-7 – volume: 11 start-page: 326 issue: 2 year: 2021 ident: 4067_CR33 publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-20-0766 – volume: 21 start-page: 671 issue: 5 year: 2020 ident: 4067_CR16 publication-title: Lancet Oncol doi: 10.1016/S1470-2045(20)30109-1 – volume: 13 start-page: 687 issue: 6 year: 2011 ident: 4067_CR29 publication-title: J Mol Diagn doi: 10.1016/j.jmoldx.2011.06.007 – volume: 29 start-page: 1206 issue: 5 year: 2023 ident: 4067_CR22 publication-title: J Oncol Pharm Pract doi: 10.1177/10781552231171079 – volume: 46 start-page: 669 issue: 7 year: 2016 ident: 4067_CR6 publication-title: Hepatol Res doi: 10.1111/hepr.12605 – volume: 11 start-page: 2488 issue: 10 year: 2021 ident: 4067_CR9 publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-20-1669 – ident: 4067_CR18 doi: 10.6004/jnccn.2023.0035 – volume: 47 start-page: 1003 issue: 9 year: 2015 ident: 4067_CR11 publication-title: Nat Genet doi: 10.1038/ng.3375 – volume: 6 start-page: 79 issue: 2 year: 2017 ident: 4067_CR2 publication-title: Hepatobiliary Surg Nutr doi: 10.21037/hbsn.2017.01.06 – volume: 30 start-page: 1071 issue: 11 year: 2021 ident: 4067_CR32 publication-title: Expert Opin Investig Drugs doi: 10.1080/13543784.2021.1995355 – volume: 38 start-page: 3 issue: 1 year: 2016 ident: 4067_CR8 publication-title: Int J Mol Med doi: 10.3892/ijmm.2016.2620 – volume: 13 start-page: 1474 issue: 10 year: 2018 ident: 4067_CR30 publication-title: J Thora Oncol doi: 10.1016/j.jtho.2018.05.041 – volume: 21 start-page: 2684 issue: 12 year: 2015 ident: 4067_CR10 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-14-2329 – volume: 59 start-page: 1427 issue: 4 year: 2014 ident: 4067_CR13 publication-title: Hepatology doi: 10.1002/hep.26890 – ident: 4067_CR31 doi: 10.1200/PO.17.00018 – volume: 40 start-page: 1021 issue: 8 year: 2016 ident: 4067_CR35 publication-title: Am J Surg Pathol doi: 10.1097/PAS.0000000000000670 – volume: 115 start-page: 870 issue: 7 year: 2023 ident: 4067_CR7 publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djad046 – volume: 80 start-page: 923 issue: 9 year: 2020 ident: 4067_CR21 publication-title: Drugs doi: 10.1007/s40265-020-01330-y – volume: 4 start-page: 557 year: 2020 ident: 4067_CR14 publication-title: JCO Precis Oncol doi: 10.1200/PO.18.00414 – volume: 16 start-page: 139 issue: 2 year: 2005 ident: 4067_CR23 publication-title: Cytokine Growth Factor Rev doi: 10.1016/j.cytogfr.2005.01.001 – volume: 28 start-page: i333 issue: 18 year: 2012 ident: 4067_CR20 publication-title: Bioinformatics (Oxford, England) – volume: 40 start-page: 70 issue: 1 year: 2022 ident: 4067_CR17 publication-title: Cancer Cell doi: 10.1016/j.ccell.2021.12.006 – volume: 12 start-page: 45 issue: 1 year: 2023 ident: 4067_CR4 publication-title: Hepatobiliary Surg Nutr doi: 10.21037/hbsn-21-75 – volume: 79 start-page: 731 issue: 5 year: 2021 ident: 4067_CR36 publication-title: Histopathology doi: 10.1111/his.14417 – volume: 14 start-page: 1213 issue: 5 year: 1999 ident: 4067_CR34 publication-title: Hum Reprod (Oxford, England) doi: 10.1093/humrep/14.5.1213 – volume: 21 start-page: e00173 year: 2020 ident: 4067_CR28 publication-title: Pract Lab Med doi: 10.1016/j.plabm.2020.e00173 – ident: 4067_CR1 doi: 10.3389/fonc.2022.906778 – volume: 21 start-page: 352 issue: 2 year: 2019 ident: 4067_CR27 publication-title: J Mol Diagn doi: 10.1016/j.jmoldx.2018.10.003 |
SSID | ssj0021816 |
Score | 2.4301505 |
SecondaryResourceType | online_first |
Snippet | Patients with intrahepatic cholangiocarcinoma (iCCA) harboring FGFR2 fusion/rearrangement benefit from targeted therapies, highlighting the need for reliable... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database |
Title | FGFR2 fusion/rearrangement analysis in intrahepatic cholangiocarcinoma using DNA/RNA-based NGS and FISH |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40198372 https://www.proquest.com/docview/3188082037 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5tAEF65iVT1UvUd96Wt1BvaBFgWzNFuS9xKQWoeldsLWtjF5RAc2aBKufd_d_YBwU0iNb2sLIQHtPMx75lF6L0oOfXAOSacRTkJRC5IzpjKFHIOBjQHD0E1OB-l4fws-LJgi9Ho96BqqW3y_eLyxr6S_-EqXAO-qi7ZO3C2JwoX4DfwF1bgMKz_xOPkMDn2nbJVES-gslZ1t6pZwBaO23EjlSpmbECoyAs9nlW7s_WyAi22Lqp6dc6dVkcMPqZToHKcTonSbcJJD090biH5fDIfGrHfKvg4Vr82jhlbq6MKXD9kEFwcjKRQpx5vRe_7KPWi6rE5M-difwW4nnfqVAf6zZ3fVcV8X-5T2as_fsp6eSnt7TZ44TNd8zKQt-BcMhJS0765L40MDqhPVH36jRLeFHVstK9HDEVQuCS-0mddDv8vNdcXH_aDmjWNDGhkmkYW30O7fhSpbP_uNJnN0t5zBzNIJ727t7XdV7oH89qbbFs4t7gt2nw5fYQeWr8DTw2IHqORrJ-g-0e2suIpWmosYYOlgy0k4Q5JuKrxEEn4OpKwRhIGJB30OMKAI6AhsMLRM3SWfDr9MCf2EA5SUNdtSOSWYBG6oXRlXISlDF3OvILywItoLiZlAKuXc-FSykvGGOj-KJQy9EoBH3ru0-dop17Vcg_hwIN_iXgSRzEPKMiFIi4nQuRq4pRXxHSMnG7jsgszayW7nVlj9K7b2wxEospz8Vqu2k1G1YxBsGxpNEYvzKb39AJwaSY08l_e6Vmv0IMr9L5GO826lW_AGG3ytxYqfwDO04TE |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FGFR2+fusion%2Frearrangement+analysis+in+intrahepatic+cholangiocarcinoma+using+DNA%2FRNA-based+NGS+and+FISH&rft.jtitle=Virchows+Archiv+%3A+an+international+journal+of+pathology&rft.au=Zhang%2C+Xin&rft.au=Bai%2C+Qianming&rft.au=Wang%2C+Yulin&rft.au=Jiang%2C+Zhengzeng&rft.date=2025-04-08&rft.issn=0945-6317&rft.eissn=1432-2307&rft_id=info:doi/10.1007%2Fs00428-025-04067-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00428_025_04067_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0945-6317&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0945-6317&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0945-6317&client=summon |