Legitimacy of the stochastic Michaelis-Menten approximation
Michaelis-Menten kinetics are commonly used to represent enzyme-catalysed reactions in biochemical models. The Michaelis-Menten approximation has been thoroughly studied in the context of traditional differential equation models. The presence of small concentrations in biochemical systems, however,...
Saved in:
Published in | IET systems biology Vol. 5; no. 1; p. 58 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
01.01.2011
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | Michaelis-Menten kinetics are commonly used to represent enzyme-catalysed reactions in biochemical models. The Michaelis-Menten approximation has been thoroughly studied in the context of traditional differential equation models. The presence of small concentrations in biochemical systems, however, encourages the conversion to a discrete stochastic representation. It is shown that the Michaelis-Menten approximation is applicable in discrete stochastic models and that the validity conditions are the same as in the deterministic regime. The authors then compare the Michaelis-Menten approximation to a procedure called the slow-scale stochastic simulation algorithm (ssSSA). The theory underlying the ssSSA implies a formula that seems in some cases to be different from the well-known Michaelis-Menten formula. Here those differences are examined, and some special cases of the stochastic formulas are confirmed using a first-passage time analysis. This exercise serves to place the conventional Michaelis-Menten formula in a broader rigorous theoretical framework. |
---|---|
ISSN: | 1751-8849 |
DOI: | 10.1049/iet-syb.2009.0057 |