Synthesis, electrochemical, in situ spectroelectrochemical and in situ electrocolorimetric characterization of new metal-free and metallophthalocyanines substituted with 4-{2-[2-(1-naphthyloxy)ethoxy]ethoxy} groups

The synthesis of novel metal-free and metallophthalocyanines [Ni(II), Zn(II), Co(II), Cu(II)] were prepared by cyclotetramerization of a novel 4-{2-[2-(1-naphthyloxy)ethoxy]ethoxy}phthalonitrile and the corresponding metal salts (NiCl 2, Zn(CH 3COO) 2, CoCl 2 and CuCl 2). The structures of the targe...

Full description

Saved in:
Bibliographic Details
Published inPolyhedron Vol. 29; no. 5; pp. 1475 - 1484
Main Authors Acar, Irfan, Bıyıklıoğlu, Zekeriya, Koca, Atıf, Kantekin, Halit
Format Journal Article
LanguageEnglish
Published OXFORD Elsevier Ltd 30.03.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The synthesis of novel metal-free and metallophthalocyanines [Ni(II), Zn(II), Co(II), Cu(II)] were prepared by cyclotetramerization of a novel 4-{2-[2-(1-naphthyloxy)ethoxy]ethoxy}phthalonitrile and the corresponding metal salts (NiCl 2, Zn(CH 3COO) 2, CoCl 2 and CuCl 2). The structures of the target compounds were confirmed using elemental analysis, IR, 1H NMR, 13C NMR, UV–Vis and MS spectral data. Voltammetric and in situ spectroelectrochemical measurements show that while cobalt phthalocyanine complex gives both metal-based and ring-based redox processes, metal-free, and zinc phthalocyanines show only ring-based reduction and oxidation processes. All complexes decomposed and coated on the electrode as nonconductive film at positive potential window of the electrolyte. An in situ electrocolorimetric method has been applied to investigate color of the electro-generated anionic and cationic forms of the complexes. The synthesis of novel metal-free and metallophthalocyanines [Ni(II), Zn(II), Co(II), Cu(II)] were prepared by cyclotetramerization of a novel 4-{2-[2-(1-naphthyloxy)ethoxy]ethoxy}phthalonitrile and the corresponding metal salts (NiCl 2, Zn(CH 3COO) 2, CoCl 2 and CuCl 2). The structures of the target compounds were confirmed using elemental analysis, IR, 1H NMR, 13C NMR, UV–Vis and MS spectral data. Voltammetric and in situ spectroelectrochemical measurements show that while cobalt phthalocyanine complex gives both metal-based and ring-based redox processes, metal-free, and zinc phthalocyanines show only ring-based reduction and oxidation processes. All complexes decomposed and coated on the electrode as nonconductive film at positive potential window of the electrolyte. An in situ electrocolorimetric method has been applied to investigate color of the electro-generated anionic and cationic forms of the complexes.
ISSN:0277-5387
DOI:10.1016/j.poly.2010.01.032