General inferential limits under differential and Pufferfish privacy

Differential privacy (DP) is a class of mathematical standards for assessing the privacy provided by a data-release mechanism. This work concerns two important flavors of DP that are related yet conceptually distinct: pure ε-differential privacy (ε-DP) and Pufferfish privacy. We restate ε-DP and Puf...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of approximate reasoning Vol. 172; p. 109242
Main Authors Bailie, James, Gong, Ruobin
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Differential privacy (DP) is a class of mathematical standards for assessing the privacy provided by a data-release mechanism. This work concerns two important flavors of DP that are related yet conceptually distinct: pure ε-differential privacy (ε-DP) and Pufferfish privacy. We restate ε-DP and Pufferfish privacy as Lipschitz continuity conditions and provide their formulations in terms of an object from the imprecise probability literature: the interval of measures. We use these formulations to derive limits on key quantities in frequentist hypothesis testing and in Bayesian inference using data that are sanitised according to either of these two privacy standards. Under very mild conditions, the results in this work are valid for arbitrary parameters, priors and data generating models. These bounds are weaker than those attainable when analysing specific data generating models or data-release mechanisms. However, they provide generally applicable limits on the ability to learn from differentially private data – even when the analyst's knowledge of the model or mechanism is limited. They also shed light on the semantic interpretations of the two DP flavors under examination, a subject of contention in the current literature.1
ISSN:0888-613X
1873-4731
DOI:10.1016/j.ijar.2024.109242