Inclined surface slip flow of nanoparticles with subject to mixed convection phenomenon: Fractional calculus applications
The interest of researchers towards the nanofluids is noticed in recent years due to leading applications in thermal systems and industrial framework. Referring to such motivations, current study explores the role of velocity slip effects for the mixed convection flow of nanofluid endorsed due to in...
Saved in:
Published in | Journal of the Indian Chemical Society Vol. 99; no. 7; p. 100564 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The interest of researchers towards the nanofluids is noticed in recent years due to leading applications in thermal systems and industrial framework. Referring to such motivations, current study explores the role of velocity slip effects for the mixed convection flow of nanofluid endorsed due to inclined surface. The Casson base fluid model for which the thermal impact needs to be improved. The analysis is observed when the role of velocity slip is important. The modeling of unsteady free convective flow problem yields partial differential system. The Atangana-Baleanu (AB) and Caputo-Fabrizio (CF) fractional operators are implemented in order to simulates the computation of problem. The graphical presentations are prepared in order to check the physical dynamic of parameters. |
---|---|
ISSN: | 0019-4522 |
DOI: | 10.1016/j.jics.2022.100564 |