Trace Cd2+ Ions Detection on the Flower-Like Ag@CuO Substrate
CuO flower-like material (FM) was prepared via the facile hydrothermal method, and Ag nanoparticles were deposited on the CuO FM to obtain Ag@CuO composite. Rhodamine 6G (R6G) was used as the probe molecule on Ag@CuO FM substrate to study surface enhanced Raman scattering (SERS). It is discovered th...
Saved in:
Published in | Nanomaterials (Basel, Switzerland) Vol. 10; no. 9; p. 1664 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
25.08.2020
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | CuO flower-like material (FM) was prepared via the facile hydrothermal method, and Ag nanoparticles were deposited on the CuO FM to obtain Ag@CuO composite. Rhodamine 6G (R6G) was used as the probe molecule on Ag@CuO FM substrate to study surface enhanced Raman scattering (SERS). It is discovered that it exhibited an excellent SERS performance with limit of detection of 3.58 × 10−16 M and enhancement factor (EF) of 3.99 × 1010. More importantly, we used it as a SERS substrate to detect cadmium ions and found that its limit of detection (LOD) reaches up to 2.6 × 10−8 M, which is lower than the highest allowable Cd2+ concentration in drinking water set by the World Health Organization (WHO) and Environmental Protection Agency (EPA). Therefore, the proposed composite can be applicable to the detection of Cd2+ in drinking water and in soil. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano10091664 |