Viscosity-boosting effects of polymer additives in automotive lubricants

This study investigated polyethylene glycol (PEG), as a polymer improver of the paraffinic oil viscosity index (VI). The characterization of PEG/paraffinic oil blends at different concentrations (0%, 1%, 2%, 3%, 5%, and 10%), was performed using Raman spectroscopy and optical microscopy. The rheolog...

Full description

Saved in:
Bibliographic Details
Published inPolymer bulletin (Berlin, Germany) Vol. 81; no. 8; pp. 6995 - 7011
Main Authors Boussaid, Mohamed, Haddadine, Nabila, Benmounah, Abdelbaki, Dahal, Jiba, Bouslah, Naima, Benaboura, Ahmed, El-Shall, Samy
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study investigated polyethylene glycol (PEG), as a polymer improver of the paraffinic oil viscosity index (VI). The characterization of PEG/paraffinic oil blends at different concentrations (0%, 1%, 2%, 3%, 5%, and 10%), was performed using Raman spectroscopy and optical microscopy. The rheological parameters as the viscosity index and activation energy were determined using the kinematic viscosity measurements. Results showed that the VI improvement reached an optimal value for the blend containing 3% PEG, with greater value for blends containing 2% PEG than 5 and 10% PEG. The presence of polymer particles was observed by optical microscopy, which confirmed the lack of PEG distribution in the blend containing 5%, and more, whereas mixtures with 3 and 2% PEG exhibited good particle distribution, evidenced by smaller polymer particle sizes. This finding was corroborated by Raman spectroscopy, which revealed the absence of polymer–oil intermolecular interactions in the PEG/paraffinic oil blends. The rheological tests showed that increasing the blend temperature from 40 to 80 ℃, improved the PEG chains dispersion in the paraffin oil, for the blends containing up to 3% PEG. The difference of the activation energy of the pure paraffinic oil and the PEG/paraffinic oil blends, (ΔEa) was calculated, and the correlation between the ΔEa and the viscosity index values was established. Therefore, adding PEG to paraffinic oil appeared to be promising for the viscosity index improvement and promote industrial applications of paraffinic oil.
ISSN:0170-0839
1436-2449
DOI:10.1007/s00289-023-05028-5