Lorentz Violation at the Level of Undergraduate Classical Mechanics

In this paper, we use the classical limit of the Standard-Model Extension to explore some generic features of Lorentz violation. This classical limit is formulated at the level of undergraduate physics. We first discuss the general equations of motion and then concentrate on three specific systems....

Full description

Saved in:
Bibliographic Details
Published inSymmetry (Basel) Vol. 12; no. 10; p. 1734
Main Authors Clyburn, Madeline, Lane, Charles D.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we use the classical limit of the Standard-Model Extension to explore some generic features of Lorentz violation. This classical limit is formulated at the level of undergraduate physics. We first discuss the general equations of motion and then concentrate on three specific systems. First, we consider the theoretical aspects of pendulum motion in the presence of Lorentz violation, followed by some sample experimental results. The experimental bounds we achieve, in the range of 10−3, are not competitive with the current bounds from atomic clocks; rather, our experiment illustrates some common ideas and methods that appear in Lorentz-violation studies. We then discuss how Newton’s 2nd Law must be treated with caution in our model. Finally, we introduce a computational simulation of a binary star system that is perturbed by Lorentz-violating effects. This simulation shows some interesting behavior that could be the subject of future analytical studies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2073-8994
2073-8994
DOI:10.3390/sym12101734