Synthesis and luminescent properties of Eu3+doped Y2WO6 nanophosphors

Novel nanosized Y2WO6:Eu3+ phosphors were synthesized via a co-precipitation reaction. The crystal structure of Y2WO6:Eu3+sample was monoclinic phase characterized by using X-ray diffraction (XRD). The particle size was about 80 nm ob-served by field emission scanning electron microscopy (FE-SEM). T...

Full description

Saved in:
Bibliographic Details
Published inJournal of rare earths Vol. 31; no. 9; pp. 864 - 870
Main Author 郝若男 孟庆裕 刘威 刘宏亮
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Novel nanosized Y2WO6:Eu3+ phosphors were synthesized via a co-precipitation reaction. The crystal structure of Y2WO6:Eu3+sample was monoclinic phase characterized by using X-ray diffraction (XRD). The particle size was about 80 nm ob-served by field emission scanning electron microscopy (FE-SEM). The photoluminescence properties of Y2WO6:Eu3+nanophos-phors were studied. The results indicated that Eu3+ 5D0→7F2 red luminescence at 611 nm could be effectively excited by 394 nm near-UV light and 465 nm blue light in Y2WO6 host. The luminescence intensity was the strongest while the Eu3+doping concentra-tion was 20%. And the chromaticity coordinates of this concentration is (0.651, 0.348). The energy transfer type between the Eu3+was determined to be the exchange interaction and the critical energy transfer distance (Dc) was calculated to be about 0.81 ang-strom. The J-O parameters, quantum efficiencies of Eu3+ 5D0 energy level and Huang-Rhys factor of Y2WO6:Eu3+nanophosphors were calculated. The calculated values indicated that Y2WO6:Eu3+had a high capacity for activators and the electron-phonon cou-pling was weak. Therefore, the Y2WO6:Eu3+nanophosphor is a nice red luminescent material and it may have a potential applica-tion in white LED.
Bibliography:HAO Ruonan , MENG Qingyu , LIU Wei, LIU Hongling (Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics & Electronic Engineering, Harbin Normal University Harbin 150025, China)
11-2788/TF
Novel nanosized Y2WO6:Eu3+ phosphors were synthesized via a co-precipitation reaction. The crystal structure of Y2WO6:Eu3+sample was monoclinic phase characterized by using X-ray diffraction (XRD). The particle size was about 80 nm ob-served by field emission scanning electron microscopy (FE-SEM). The photoluminescence properties of Y2WO6:Eu3+nanophos-phors were studied. The results indicated that Eu3+ 5D0→7F2 red luminescence at 611 nm could be effectively excited by 394 nm near-UV light and 465 nm blue light in Y2WO6 host. The luminescence intensity was the strongest while the Eu3+doping concentra-tion was 20%. And the chromaticity coordinates of this concentration is (0.651, 0.348). The energy transfer type between the Eu3+was determined to be the exchange interaction and the critical energy transfer distance (Dc) was calculated to be about 0.81 ang-strom. The J-O parameters, quantum efficiencies of Eu3+ 5D0 energy level and Huang-Rhys factor of Y2WO6:Eu3+nanophosphors were calculated. The calculated values indicated that Y2WO6:Eu3+had a high capacity for activators and the electron-phonon cou-pling was weak. Therefore, the Y2WO6:Eu3+nanophosphor is a nice red luminescent material and it may have a potential applica-tion in white LED.
red nanophosphors; tungstate; luminescence; white LED; rare earths
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1002-0721
2509-4963
DOI:10.1016/S1002-0721(12)60371-8