Indicator Crop Bioassays to Define Citrus Productivity in Sandy Soils
Citrus production in Florida is commonly affected by a high degree of spatial variability of soils. Therefore, this study developed rapid indicator crop bioassays to evaluate the relationships between indicator crops and citrus production at various soil depths. A citrus grove was divided into five...
Saved in:
Published in | HortScience Vol. 45; no. 12; pp. 1859 - 1865 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Alexandria, VA
American Society for Horticultural Science
01.12.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Citrus production in Florida is commonly affected by a high degree of spatial variability of soils. Therefore, this study developed rapid indicator crop bioassays to evaluate the relationships between indicator crops and citrus production at various soil depths. A citrus grove was divided into five productivity zones based on existing tree canopy volume using GIS software ("very poor," "poor," "medium," "good," and "very good"). Visual ratings of percentage cover were collected from each zone using a 1-m2 quadrant. Six random soil samples were collected between the tree rows from each productivity zone at four depths (0 to 15, 15 to 30, 30 to 45, and 45 to 60 cm). Greenhouse bioassay experiments used sorghum and radish crops grown in soil sampled from four depths. Overhead photographs of potted radish plants were captured periodically with a SLR digital camera to calculate leaf area by image processing. Shoot weights, shoot length, root weights, and leaf nutrient concentrations were measured at harvest (56 and 21 days after germination for sorghum and radish, respectively). Germination, shoot length, and shoot weight of sorghum and radish were significantly affected by the productivity zone. Sorghum (0 to 30 cm), radish (0 to 45 and 0 to 60 cm) and weed cover were strongly correlated (r 0.50 to 0.60***) with citrus yield and canopy volume at the lower two depths. The strong relationships (r > 0.50***) of sorghum and radish shoot weights and weed cover with soil properties at greater depths demonstrated the important role of cumulative root zone depth of 60 cm in differentiating citrus productivity. These results revealed that citrus production in poor areas of the grove was limited by the shallow depth of productive soil, and citrus productivity could be successfully mapped using indicator crop bioassays with soil samples taken at multiple depths. |
---|---|
ISSN: | 0018-5345 2327-9834 |
DOI: | 10.21273/HORTSCI.45.12.1859 |