A Low-Voltage SiGe BiCMOS 77-GHz Automotive Radar Chipset
This paper presents a complete 2.5-V 77-GHz chipset for Doppler radar and imaging applications fabricated in SiGe HBT and SiGe BiCMOS technologies. The chipset includes a 123-mW single-chip receiver with 24-dB gain and an IP 1 dB of -21.7 dBm at 76-GHz local oscillator (LO) and 77-GHz RF, 4.8-dB dou...
Saved in:
Published in | IEEE transactions on microwave theory and techniques Vol. 56; no. 5; pp. 1092 - 1104 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.05.2008
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper presents a complete 2.5-V 77-GHz chipset for Doppler radar and imaging applications fabricated in SiGe HBT and SiGe BiCMOS technologies. The chipset includes a 123-mW single-chip receiver with 24-dB gain and an IP 1 dB of -21.7 dBm at 76-GHz local oscillator (LO) and 77-GHz RF, 4.8-dB double-sideband noise figure at 76-GHz LO and 1-GHz IF, and worst case -98.5 dBc/Hz phase noise at 1-MHz offset over the entire voltage-controlled oscillator tuning range at room temperature. Monolithic spiral inductors and transformers result in a receiver core area of 450 mum times 280 mum. For integration of an entire 77-GHz transceiver, a power amplifier with 19-dB gain, +14.5-dBm saturated output power, and 15.7% power-added efficiency is demonstrated. Frequency divider topologies for 2.5-V operation are investigated and measurement results show a 105-GHz static frequency divider consuming 75 mW, and a 107-GHz Miller divider consuming 33 mW. Measurements on all circuits confirm operation up to 100 deg C. Low-power low-noise design techniques for each circuit block are discussed. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0018-9480 1557-9670 |
DOI: | 10.1109/TMTT.2008.921268 |