A Low-Voltage SiGe BiCMOS 77-GHz Automotive Radar Chipset

This paper presents a complete 2.5-V 77-GHz chipset for Doppler radar and imaging applications fabricated in SiGe HBT and SiGe BiCMOS technologies. The chipset includes a 123-mW single-chip receiver with 24-dB gain and an IP 1 dB of -21.7 dBm at 76-GHz local oscillator (LO) and 77-GHz RF, 4.8-dB dou...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on microwave theory and techniques Vol. 56; no. 5; pp. 1092 - 1104
Main Authors Nicolson, S.T., Yau, K.H.K., Pruvost, S., Danelon, V., Chevalier, P., Garcia, P., Chantre, A., Sautreuil, B., Voinigescu, S.P.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.05.2008
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents a complete 2.5-V 77-GHz chipset for Doppler radar and imaging applications fabricated in SiGe HBT and SiGe BiCMOS technologies. The chipset includes a 123-mW single-chip receiver with 24-dB gain and an IP 1 dB of -21.7 dBm at 76-GHz local oscillator (LO) and 77-GHz RF, 4.8-dB double-sideband noise figure at 76-GHz LO and 1-GHz IF, and worst case -98.5 dBc/Hz phase noise at 1-MHz offset over the entire voltage-controlled oscillator tuning range at room temperature. Monolithic spiral inductors and transformers result in a receiver core area of 450 mum times 280 mum. For integration of an entire 77-GHz transceiver, a power amplifier with 19-dB gain, +14.5-dBm saturated output power, and 15.7% power-added efficiency is demonstrated. Frequency divider topologies for 2.5-V operation are investigated and measurement results show a 105-GHz static frequency divider consuming 75 mW, and a 107-GHz Miller divider consuming 33 mW. Measurements on all circuits confirm operation up to 100 deg C. Low-power low-noise design techniques for each circuit block are discussed.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9480
1557-9670
DOI:10.1109/TMTT.2008.921268