Geochronology and Geochemistry of the Xianghualing Granitic Rocks: Insights into Multi-Stage Sn-Polymetallic Mineralization in South China

Multi-stage magmatic events associated with large tungsten-tin polymetallic deposits in the Nanling Range have been the subject of extensive research spanning many years. In this paper we report the results of a systematic study of the petrology, whole-rock geochemistry, zircon U-Pb chronology, and...

Full description

Saved in:
Bibliographic Details
Published inMinerals (Basel) Vol. 12; no. 9; p. 1091
Main Authors Luo, Zhaoyang, Li, Huan, Wu, Jinghua, Sun, Wenbo, Zhou, Jianqi, Maulana, Adi
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Multi-stage magmatic events associated with large tungsten-tin polymetallic deposits in the Nanling Range have been the subject of extensive research spanning many years. In this paper we report the results of a systematic study of the petrology, whole-rock geochemistry, zircon U-Pb chronology, and trace element geochemistry of granite bodies exposed in the Xianghualing ore field. They show that the granites in the study area are characterized by high SiO2 (63.83%–75.29%), Al2O3 (13.12%–18.87%), Rb (565–3260 ppm), Nd (67.3–113.5 ppm) and Ta (23.2–129.0 ppm) and by low MgO (0.02%–0.22%), TiO2 (0%–0.02%), Sr (5.3–80.5 ppm) and Ba (7.9–66.4 ppm). The rocks are highly differentiated A-type peraluminous granite, which originated in an extensional within-plate tectonic setting. Based on U-Pb dating and trace element analysis, the following multi-stage magma-hydrothermal events were identified: (1) Paleozoic (~347 Ma) and Triassic (~206 Ma) magmatic stages (initial enrichment epochs of ore-forming elements), (2) Jurassic (~161 Ma) magmatic-hydrothermal stage (mineralization epoch), and (3) Cretaceous hydrothermal overprinting stage (with peaks in the Early Cretaceous ~120 Ma and Late Cretaceous ~80 Ma). From an economic point of view, the Late Cretaceous appears to have great potential for tungsten-tin mineralization. Zircon trace element geochemistry indicates that the ore-forming fluids related to tin mineralization in the Cretaceous originated from the crust and underwent highly differentiated evolutionary processes under relatively reducing conditions. This paper emphasizes the Cretaceous tungsten-tin metallogenic events in the Nanling Range and provides an essential basis and new ideas for further tin-tungsten exploration.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2075-163X
2075-163X
DOI:10.3390/min12091091