Excimer laser ablation of gold-loaded inverse polystyrene-block-poly (2-vinylpyridine) micelles

Diblock-copolymers (PS(1700)-b-P2VP(450) or PS(1350)-b-P2VP(400)) forming spherical micelles, can be loaded with a Au-salt and deposited on top of various substrates. Such polymer films have been exposed to a pulsed ArF excimer laser in order to remove the polymer matrix and, in parallel, to chemica...

Full description

Saved in:
Bibliographic Details
Published inApplied physics. A, Materials science & processing Vol. 72; no. 6; pp. 679 - 685
Main Authors LENGL, G, PLETTL, A, ZIEMANN, P, SPATZ, J. P, MÖLLER, M
Format Journal Article
LanguageEnglish
Published Berlin Springer 01.06.2001
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Diblock-copolymers (PS(1700)-b-P2VP(450) or PS(1350)-b-P2VP(400)) forming spherical micelles, can be loaded with a Au-salt and deposited on top of various substrates. Such polymer films have been exposed to a pulsed ArF excimer laser in order to remove the polymer matrix and, in parallel, to chemically reduce the salt into metallic Au nanodots. To analyze this process in detail, it was subdivided into three steps: (a) laser ablation of thick and thin diblock-copolymer films; (b) laser irradiation of Au-salt loaded diblock-copolymer films; and (c) laser irradiation of arrays of metallic Au nanodots. In (a) it was found that a complete removal of the polymer by laser ablation is only possible in air under ambient conditions while identical laser irradiations under vacuum result in a residual layer of approximately 14 nm. Substep (b) revealed a nucleation process of the resulting metallic Au within the micellar core leading to clusters of small Au dots. Furthermore, this substep provided evidence for an asymmetric interplay between the macroscopic temperature of a polymer film during laser treatment and the energy density per laser pulse. In (c) it could be demonstrated that metallic Au nanodots on mica are stable against laser irradiation under conditions leading to a polymer removal.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0947-8396
1432-0630
DOI:10.1007/s003390100762