Evaluation of driving effects of carbon storage change in the source of the Yellow River: A perspective with CMIP6 future development scenarios

Understanding how future climate scenarios impact land use/cover (LUC) and carbon storage (CS) is crucial for achieving carbon neutrality. However, research often overlooks the spatiotemporal impacts of future climate and socioeconomic changes on CS. This study integrates system dynamic (SD), patch-...

Full description

Saved in:
Bibliographic Details
Published inEcological informatics Vol. 83; p. 102790
Main Authors Ling, Ming, Feng, Zihao, Chen, Zizhen, Lan, Yanping, Li, Xinhong, You, Haotian, Han, Xiaowen, Chen, Jianjun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Understanding how future climate scenarios impact land use/cover (LUC) and carbon storage (CS) is crucial for achieving carbon neutrality. However, research often overlooks the spatiotemporal impacts of future climate and socioeconomic changes on CS. This study integrates system dynamic (SD), patch-generating land use simulation (PLUS), the integrated valuation of ecosystem services and tradeoffs (InVEST) model, and the geographical detector to assess the LUC and CS evolution in the source of the Yellow River (SYR) from 2020 to 2060. Utilizing carbon density and LUC data, we explored the influence of natural and socioeconomic factors on CS under five shared socioeconomic pathways and representative concentration pathways (SSP-RCPs) scenarios. Our findings demonstrate that: (1) Ecological land, including woodland, grassland, and wetland, expanded more under SSP126 compared to SSP245, with SSP345, SSP460, and SSP585 showing a trend of degradation tied to deeper economic contribution. (2) By 2060, CS in terrestrial ecosystem under SSP126, SSP245, SSP345, SSP460, and SSP585 were 702.33 × 106 t, 700.33 × 106 t, 697.22 × 106 t, 696.03 × 106 t, and 691.21 × 106 t, respectively. This represents changes of 3.69 × 106 t, 1.69 × 106 t, −1.49 × 106 t, −2.68 × 106 t, and −7.43 × 106 t compared to 2020. (3) Soil type predominantly influenced the spatial differentiation of CS, with significant interactions with precipitation. This research provides new insights into land redistribution, economic strategies, and achieving carbon neutrality. •The carbon storage (CS) of SSP126 increases markedly from 2020 to 2060.•Soil organic carbon (SOC) constitutes the largest carbon pool.•Soil type and precipitation are the primary factors influencing the CS.•To enhance CS, it is essential to limit overconsumption of grasslands and water resources.
ISSN:1574-9541
DOI:10.1016/j.ecoinf.2024.102790