Full-scale tests on the mechanical behaviour of a continuously welded stainless steel roof under wind excitation
The wind uplift performance of the continuously welded stainless steel roof (CWSSR) system adopted in the Zhaoqing New District Sports (ZNDS) Center of China is investigated in this study. To determine the optimal welding program and examine the mechanical properties of the continuously welded stain...
Saved in:
Published in | Thin-walled structures Vol. 150; p. 106680 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The wind uplift performance of the continuously welded stainless steel roof (CWSSR) system adopted in the Zhaoqing New District Sports (ZNDS) Center of China is investigated in this study. To determine the optimal welding program and examine the mechanical properties of the continuously welded stainless steel joints, uniaxial tensile testing is first conducted on 27 specimens with tension-shear and tension-bending types. Two CWSSR specimens, one that is square-shaped with a horizontal layout and one that is rectangular-shaped with an inclination layout of 10.71°, are further tested under dynamic and static ultimate wind uplift loadings to explore the wind uplift capacity. All specimens are full-size, and the corresponding materials, structural details and construction technologies are kept the same as the actual building to ensure the authenticity of the testing investigations. The testing results indicate that the integrated and sealed CWSSR system has a clear force transmission mechanism and a remarkable wind resistance performance. The welded joints achieve the best performance, and the mechanical behaviours are equivalent to those of the base material under the continuously welded conditions including an electric current of 65 A and a moving velocity of 750 mm/s. An excellent dynamic wind suction performance is achieved under 5000 five-level cumulative loading cycles with a maximum pressure of 5400 Pa. The static ultimate pressure reaches 9400 Pa for the square specimen and 10,400 Pa for the rectangular specimen. Damage observations show that no tearing or rupture failures are observed for the CWSSR system. The investigation results contribute the most to the safe design of the ZNDS Center and are expected to provide guidelines for future applications of the CWSSR system.
•Wind uplift performances of two full-scale CWSSR specimens are investigated under dynamic and static ultimate loadings.•Uniaxial tensile tests of 27 welded joints are conducted and an optimal welding program is sugested.•A high-efficiency roof of the CWSSR system is highlighted based on comparative discussions with traditional roof systems.•The roof sheets of the CWSSR system appear local plastic deformation without rupture failure under ultimate loading. |
---|---|
AbstractList | The wind uplift performance of the continuously welded stainless steel roof (CWSSR) system adopted in the Zhaoqing New District Sports (ZNDS) Center of China is investigated in this study. To determine the optimal welding program and examine the mechanical properties of the continuously welded stainless steel joints, uniaxial tensile testing is first conducted on 27 specimens with tension-shear and tension-bending types. Two CWSSR specimens, one that is square-shaped with a horizontal layout and one that is rectangular-shaped with an inclination layout of 10.71°, are further tested under dynamic and static ultimate wind uplift loadings to explore the wind uplift capacity. All specimens are full-size, and the corresponding materials, structural details and construction technologies are kept the same as the actual building to ensure the authenticity of the testing investigations. The testing results indicate that the integrated and sealed CWSSR system has a clear force transmission mechanism and a remarkable wind resistance performance. The welded joints achieve the best performance, and the mechanical behaviours are equivalent to those of the base material under the continuously welded conditions including an electric current of 65 A and a moving velocity of 750 mm/s. An excellent dynamic wind suction performance is achieved under 5000 five-level cumulative loading cycles with a maximum pressure of 5400 Pa. The static ultimate pressure reaches 9400 Pa for the square specimen and 10,400 Pa for the rectangular specimen. Damage observations show that no tearing or rupture failures are observed for the CWSSR system. The investigation results contribute the most to the safe design of the ZNDS Center and are expected to provide guidelines for future applications of the CWSSR system.
•Wind uplift performances of two full-scale CWSSR specimens are investigated under dynamic and static ultimate loadings.•Uniaxial tensile tests of 27 welded joints are conducted and an optimal welding program is sugested.•A high-efficiency roof of the CWSSR system is highlighted based on comparative discussions with traditional roof systems.•The roof sheets of the CWSSR system appear local plastic deformation without rupture failure under ultimate loading. |
ArticleNumber | 106680 |
Author | Guo, Qiangwen Wang, Dayang Xin, Zhiyong Wu, Chengqing Zhang, Yongshan Ou, Tong Tan, Jian |
Author_xml | – sequence: 1 givenname: Tong surname: Ou fullname: Ou, Tong organization: Architectural Design and Research Institute of Guangdong Province, 510000, PR China – sequence: 2 givenname: Dayang surname: Wang fullname: Wang, Dayang email: wadaya2015@gzhu.edu.cn organization: School of Civil Engineering, Guangzhou University, 510006, PR China – sequence: 3 givenname: Zhiyong surname: Xin fullname: Xin, Zhiyong organization: Zhuhai Envete Engineering Testing Co., LTD, 519000, PR China – sequence: 4 givenname: Jian surname: Tan fullname: Tan, Jian organization: Architectural Design and Research Institute of Guangdong Province, 510000, PR China – sequence: 5 givenname: Chengqing surname: Wu fullname: Wu, Chengqing organization: School of Civil Engineering, Guangzhou University, 510006, PR China – sequence: 6 givenname: Qiangwen surname: Guo fullname: Guo, Qiangwen organization: School of Civil Engineering, Guangzhou University, 510006, PR China – sequence: 7 givenname: Yongshan surname: Zhang fullname: Zhang, Yongshan organization: School of Civil Engineering, Guangzhou University, 510006, PR China |
BookMark | eNp9kMFOwzAMQCM0JMbgA7jlBzqSNE1bcUITA6RJXOAcpYmrZcqSKUk39vd0Glw47GRb9rPsd4smPnhA6IGSOSVUPG7m-ZDmjLBTLURDrtCUNnVblIyVEzQlTJRFw0p6g25T2hBCa9ryKdotB-eKpJUDnCHlhIPHeQ14C3qtvB0buIO12tswRBx6rLAOPls_hCG5Iz6AM2Bwysp6BymNGYDDMYyjgzcQ8cF6g-Fb26yyDf4OXffKJbj_jTP0tXz5XLwVq4_X98XzqtCsrXNheMNYD4Z1FRNtqytRKyXEeHRXg6o6BbVquobzipTAGw6GQM0rpdu-7Tk15QzV5706hpQi9PLvghyVdZISeRInN3IUJ0_i5FncSNJ_5C7arYrHi8zTmYHxpb2FKJO24DUYG0FnaYK9QP8AKJuLNQ |
CitedBy_id | crossref_primary_10_1016_j_jcsr_2024_108507 crossref_primary_10_1016_j_jobe_2024_108986 crossref_primary_10_1016_j_engstruct_2024_119179 crossref_primary_10_3390_buildings14010065 crossref_primary_10_1016_j_istruc_2023_01_125 crossref_primary_10_1016_j_engstruct_2021_112670 crossref_primary_10_3390_buildings13112855 crossref_primary_10_1002_tal_2121 crossref_primary_10_1007_s12205_021_0633_5 crossref_primary_10_1016_j_tws_2023_111458 crossref_primary_10_1002_tal_2013 crossref_primary_10_1016_j_jcsr_2025_109427 crossref_primary_10_1016_j_jcsr_2022_107575 crossref_primary_10_1016_j_jcsr_2024_109133 |
Cites_doi | 10.1016/j.conbuildmat.2009.08.034 10.1016/j.conbuildmat.2016.06.092 10.1016/j.jmatprotec.2008.02.079 10.1016/j.engstruct.2016.05.055 10.1016/j.tws.2017.09.002 10.1016/j.tws.2017.08.019 10.1016/S0263-8231(03)00048-X 10.1016/j.strusafe.2014.07.001 10.1016/j.jobe.2016.10.009 10.1016/j.jweia.2013.01.002 10.1061/(ASCE)0733-9399(1995)121:9(956) 10.1016/j.engstruct.2015.10.006 10.1016/j.conbuildmat.2006.08.011 10.1061/(ASCE)ST.1943-541X.0000654 10.1016/j.tws.2019.106324 10.1016/j.jweia.2014.03.001 10.1061/(ASCE)ST.1943-541X.118 10.1016/j.jweia.2009.03.002 10.1061/(ASCE)ST.1943-541X.0001740 10.1016/j.engstruct.2011.08.020 10.1016/j.engstruct.2015.12.016 10.1016/j.jcsr.2017.09.027 10.1016/0167-6105(94)90005-1 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.tws.2020.106680 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3223 |
ExternalDocumentID | 10_1016_j_tws_2020_106680 S026382311930922X |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K WH7 WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c297t-d4822fed2b52699c567aa66719b7ea5bae7a8b844503e484ed0e745ac9f9f41d3 |
IEDL.DBID | .~1 |
ISSN | 0263-8231 |
IngestDate | Tue Jul 01 03:58:58 EDT 2025 Thu Apr 24 22:59:06 EDT 2025 Fri Feb 23 02:47:13 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Full-scale testing Ultimate wind loading Continuous welding CWSSR system Dynamic wind loading Mechanical behaviour |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-d4822fed2b52699c567aa66719b7ea5bae7a8b844503e484ed0e745ac9f9f41d3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_tws_2020_106680 crossref_primary_10_1016_j_tws_2020_106680 elsevier_sciencedirect_doi_10_1016_j_tws_2020_106680 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2020 2020-05-00 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: May 2020 |
PublicationDecade | 2020 |
PublicationTitle | Thin-walled structures |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | (bib13) 2010 Xu (bib19) 1995; 121 Henderson, Williams, Gavanski, Kopp (bib32) 2013; 114 Myuran, Mahendran (bib4) 2017; 139 Hassanein, Elchalakani, Elkawas (bib10) 2017; 120 Morrison, Kopp (bib23) 2010; 136 Jancauskas, Mahendran, Walker (bib18) 1994; 51 Sivapathasundaram, Mahendran (bib8) 2016; 124 Beck (bib5) 1975 Sivapathasundaram, Mahendran (bib6) 2017; 143 Henderson, Ginger (bib3) 2011; 33 Kot, Ali, Shaw, Riley, Alias (bib20) 2016; 30 Kim, Kim (bib25) 2009; 209 Mahaarachchi, Mahendran (bib2) 2009; 97 Kopp, Banks (bib21) 2013; 139 El Damatty, Rahman, Ragheb (bib30) 2003; 41 Friedrich, Luible (bib31) 2016; 8 (bib28) 2015 Zhang, Wang, Yan, Wang, Zhang (bib26) 2014 Luan, Li (bib16) 2019; 144 Motamedi, Ventura (bib11) 2016; 117 Hong, He (bib17) 2015; 52 Baskaran, Molleti, Sexton (bib24) 2008; 22 Silva, Lopes, Correia (bib1) 2010; 24 Sivapathasundaram, Mahendran (bib9) 2013; 122 Habte, Mooneghi, Chowdhury, Irwin (bib12) 2015; 105 Asghari Mooneghi, Irwin, Gan Chowdhury (bib22) 2014; 128 (bib27) 2010 Sivapathasundaram, Mahendran (bib7) 2016; 113 ASTM E1592-05 (bib29) 2017 Liu, Tong, Du (bib15) 2014; 35 FEMA (bib14) 2005 Sivapathasundaram (10.1016/j.tws.2020.106680_bib6) 2017; 143 Mahaarachchi (10.1016/j.tws.2020.106680_bib2) 2009; 97 Kopp (10.1016/j.tws.2020.106680_bib21) 2013; 139 (10.1016/j.tws.2020.106680_bib27) 2010 Liu (10.1016/j.tws.2020.106680_bib15) 2014; 35 Silva (10.1016/j.tws.2020.106680_bib1) 2010; 24 Hassanein (10.1016/j.tws.2020.106680_bib10) 2017; 120 Kot (10.1016/j.tws.2020.106680_bib20) 2016; 30 Habte (10.1016/j.tws.2020.106680_bib12) 2015; 105 El Damatty (10.1016/j.tws.2020.106680_bib30) 2003; 41 Myuran (10.1016/j.tws.2020.106680_bib4) 2017; 139 Zhang (10.1016/j.tws.2020.106680_bib26) 2014 FEMA (10.1016/j.tws.2020.106680_bib14) 2005 Sivapathasundaram (10.1016/j.tws.2020.106680_bib8) 2016; 124 ASTM E1592-05 (10.1016/j.tws.2020.106680_bib29) 2017 Jancauskas (10.1016/j.tws.2020.106680_bib18) 1994; 51 Sivapathasundaram (10.1016/j.tws.2020.106680_bib9) 2013; 122 (10.1016/j.tws.2020.106680_bib28) 2015 Beck (10.1016/j.tws.2020.106680_bib5) 1975 Luan (10.1016/j.tws.2020.106680_bib16) 2019; 144 Hong (10.1016/j.tws.2020.106680_bib17) 2015; 52 Baskaran (10.1016/j.tws.2020.106680_bib24) 2008; 22 Sivapathasundaram (10.1016/j.tws.2020.106680_bib7) 2016; 113 Motamedi (10.1016/j.tws.2020.106680_bib11) 2016; 117 Morrison (10.1016/j.tws.2020.106680_bib23) 2010; 136 (10.1016/j.tws.2020.106680_bib13) 2010 Henderson (10.1016/j.tws.2020.106680_bib32) 2013; 114 Henderson (10.1016/j.tws.2020.106680_bib3) 2011; 33 Xu (10.1016/j.tws.2020.106680_bib19) 1995; 121 Kim (10.1016/j.tws.2020.106680_bib25) 2009; 209 Asghari Mooneghi (10.1016/j.tws.2020.106680_bib22) 2014; 128 Friedrich (10.1016/j.tws.2020.106680_bib31) 2016; 8 |
References_xml | – volume: 136 start-page: 334 year: 2010 end-page: 337 ident: bib23 article-title: Analysis of wind-induced clip loads on standing seam metal roofs publication-title: J. Struct. Eng. – volume: 105 start-page: 231 year: 2015 end-page: 248 ident: bib12 article-title: Full-scale testing to evaluate the performance of standing seam metal roofs under simulated wind loading publication-title: Eng. Struct. – volume: 120 start-page: 249 year: 2017 end-page: 259 ident: bib10 article-title: Design of cold-formed CHS braces for steel roof structures publication-title: Thin-Walled Struct. – volume: 117 start-page: 10 year: 2016 end-page: 25 ident: bib11 article-title: Inelastic response of steel roof deck diaphragms with nailed and welded connections publication-title: Thin-Walled Struct. – volume: 143 start-page: 1 year: 2017 end-page: 17 ident: bib6 article-title: Numerical modeling of thin-walled steel roof battens subjected to pull-through failures publication-title: J. Struct. Eng. – volume: 8 start-page: 152 year: 2016 end-page: 161 ident: bib31 article-title: Measuring the wind suction capacity of plastics-based cladding using foil bag tests: a comparative study publication-title: J. Build. Engi. – year: 2010 ident: bib27 article-title: Metallic Materials—Tensile Testing (Part 1: Method Of Test At Room Temperature – volume: 22 start-page: 343 year: 2008 end-page: 363 ident: bib24 article-title: Wind performance evaluation of fully bonded roofing assemblies publication-title: Construct. Build. Mater. – volume: 122 start-page: 439 year: 2013 end-page: 451 ident: bib9 article-title: New pull-out capacity equations for the design of screw fastener connections in steel cladding systems publication-title: Thin-Walled Struct. – volume: 209 start-page: 838 year: 2009 end-page: 846 ident: bib25 article-title: The effect of electromagnetic forces on the penetrator formation during high-frequency electric resistance welding publication-title: J. Mater. Process. Technol. – volume: 30 start-page: 435 year: 2016 end-page: 445 ident: bib20 article-title: The application of electromagnetic waves in monitoring water infiltration on concrete flat roof: the case of Malaysia publication-title: Construct. Build. Mater. – volume: 97 start-page: 140 year: 2009 end-page: 150 ident: bib2 article-title: Wind uplift strength of trapezoidal steel cladding with closely spaced ribs publication-title: J. Wind Eng. Ind. Aerod. – start-page: 210 year: 2014 end-page: 214 ident: bib26 article-title: Effect of Heat input on the microstructure and mechanical properties of 445J2 ultra-pure ferritic stainless steel welding joints publication-title: J. Taiyuan Univ. Technol. – volume: 41 start-page: 1053 year: 2003 end-page: 1072 ident: bib30 article-title: Component testing and finite modeling of standing seam roofs publication-title: Thin-Walled Struct. – year: 2015 ident: bib28 article-title: Standard Test Method for the Dynamic Wind Uplift Resistance of Membrane-Roofing Systems – volume: 139 start-page: 284 year: 2013 end-page: 287 ident: bib21 article-title: Use of the wind tunnel test method for obtaining design wind loads on roof-mounted solar arrays publication-title: J. Struct. Eng. – volume: 33 start-page: 3290 year: 2011 end-page: 3298 ident: bib3 article-title: Response of pierced fixed corrugated steel roofing systems subjected to wind loads publication-title: Eng. Struct. – volume: 52 start-page: 54 year: 2015 end-page: 65 ident: bib17 article-title: Effect of human error on the reliability of roof panel under uplift wind pressure publication-title: Struct. Saf. – volume: 51 start-page: 215 year: 1994 end-page: 227 ident: bib18 article-title: Computer simulation of the fatigue behaviour of roof cladding during the passage of a tropical cyclone publication-title: J. Wind Eng. Ind. Aerod. – volume: 113 start-page: 388 year: 2016 end-page: 406 ident: bib7 article-title: Experimental studies of thin-walled steel roof battens subject to pull-through failures publication-title: Eng. Struct. – volume: 139 start-page: 135 year: 2017 end-page: 148 ident: bib4 article-title: Unified static-fatigue pull-through capacity equations for cold-formed steel roof battens publication-title: J. Constr. Steel Res. – volume: 128 start-page: 22 year: 2014 end-page: 36 ident: bib22 article-title: Large-scale testing on wind uplift of roof pavers publication-title: J. Wind Eng. Ind. Aerod. – year: 1975 ident: bib5 article-title: Appraisal of Roof Cladding under Dynamic Wind Loading-Cyclone Tracy Darwin – year: 2005 ident: bib14 article-title: Mitigation Assessment Team Report: Hurricane Charley in Florida – volume: 144 start-page: 106324 year: 2019 ident: bib16 article-title: Experimental investigation on wind uplift capacity of single span Z-purlins supporting standing seam roof systems publication-title: Thin-Walled Struct. – volume: 35 start-page: 116 year: 2014 end-page: 124 ident: bib15 article-title: Test and finite element analysis on torsional restrain of corrugated steel sheet to purlin through clips publication-title: J. Build. Struct. – volume: 124 start-page: 64 year: 2016 end-page: 84 ident: bib8 article-title: Development of fragility curves for localised pull-through failures of thin steel roof battens publication-title: Eng. Struct. – volume: 114 start-page: 27 year: 2013 end-page: 37 ident: bib32 article-title: Failure mechanisms of roof sheathing under fluctuating wind loads publication-title: J. Wind Eng. Ind. Aerod. – year: 2010 ident: bib13 article-title: Minimum Design Loads for Building and Other Structures – volume: 24 start-page: 105 year: 2010 end-page: 112 ident: bib1 article-title: The effect of wind suction on flat roofs: an experimental and analytical study of mechanically fastened waterproofing systems publication-title: Construct. Build. Mater. – volume: 121 start-page: 956 year: 1995 end-page: 963 ident: bib19 article-title: Determination of wind-induced fatigue loading on roof cladding publication-title: J. Eng. Mech. – year: 2017 ident: bib29 article-title: Standard Test Method for Structural Performance of Sheet Metal Roof and Siding Systems by Uniform Static Air Pressure Difference – volume: 24 start-page: 105 year: 2010 ident: 10.1016/j.tws.2020.106680_bib1 article-title: The effect of wind suction on flat roofs: an experimental and analytical study of mechanically fastened waterproofing systems publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2009.08.034 – year: 2010 ident: 10.1016/j.tws.2020.106680_bib13 – volume: 30 start-page: 435 year: 2016 ident: 10.1016/j.tws.2020.106680_bib20 article-title: The application of electromagnetic waves in monitoring water infiltration on concrete flat roof: the case of Malaysia publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2016.06.092 – volume: 209 start-page: 838 year: 2009 ident: 10.1016/j.tws.2020.106680_bib25 article-title: The effect of electromagnetic forces on the penetrator formation during high-frequency electric resistance welding publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2008.02.079 – volume: 124 start-page: 64 year: 2016 ident: 10.1016/j.tws.2020.106680_bib8 article-title: Development of fragility curves for localised pull-through failures of thin steel roof battens publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2016.05.055 – year: 1975 ident: 10.1016/j.tws.2020.106680_bib5 – volume: 120 start-page: 249 year: 2017 ident: 10.1016/j.tws.2020.106680_bib10 article-title: Design of cold-formed CHS braces for steel roof structures publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2017.09.002 – year: 2017 ident: 10.1016/j.tws.2020.106680_bib29 – start-page: 210 year: 2014 ident: 10.1016/j.tws.2020.106680_bib26 article-title: Effect of Heat input on the microstructure and mechanical properties of 445J2 ultra-pure ferritic stainless steel welding joints publication-title: J. Taiyuan Univ. Technol. – year: 2005 ident: 10.1016/j.tws.2020.106680_bib14 – volume: 122 start-page: 439 year: 2013 ident: 10.1016/j.tws.2020.106680_bib9 article-title: New pull-out capacity equations for the design of screw fastener connections in steel cladding systems publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2017.08.019 – volume: 41 start-page: 1053 year: 2003 ident: 10.1016/j.tws.2020.106680_bib30 article-title: Component testing and finite modeling of standing seam roofs publication-title: Thin-Walled Struct. doi: 10.1016/S0263-8231(03)00048-X – volume: 52 start-page: 54 year: 2015 ident: 10.1016/j.tws.2020.106680_bib17 article-title: Effect of human error on the reliability of roof panel under uplift wind pressure publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2014.07.001 – year: 2015 ident: 10.1016/j.tws.2020.106680_bib28 – volume: 8 start-page: 152 year: 2016 ident: 10.1016/j.tws.2020.106680_bib31 article-title: Measuring the wind suction capacity of plastics-based cladding using foil bag tests: a comparative study publication-title: J. Build. Engi. doi: 10.1016/j.jobe.2016.10.009 – volume: 114 start-page: 27 year: 2013 ident: 10.1016/j.tws.2020.106680_bib32 article-title: Failure mechanisms of roof sheathing under fluctuating wind loads publication-title: J. Wind Eng. Ind. Aerod. doi: 10.1016/j.jweia.2013.01.002 – volume: 121 start-page: 956 year: 1995 ident: 10.1016/j.tws.2020.106680_bib19 article-title: Determination of wind-induced fatigue loading on roof cladding publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(1995)121:9(956) – volume: 105 start-page: 231 year: 2015 ident: 10.1016/j.tws.2020.106680_bib12 article-title: Full-scale testing to evaluate the performance of standing seam metal roofs under simulated wind loading publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2015.10.006 – volume: 22 start-page: 343 year: 2008 ident: 10.1016/j.tws.2020.106680_bib24 article-title: Wind performance evaluation of fully bonded roofing assemblies publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2006.08.011 – volume: 35 start-page: 116 year: 2014 ident: 10.1016/j.tws.2020.106680_bib15 article-title: Test and finite element analysis on torsional restrain of corrugated steel sheet to purlin through clips publication-title: J. Build. Struct. – volume: 139 start-page: 284 year: 2013 ident: 10.1016/j.tws.2020.106680_bib21 article-title: Use of the wind tunnel test method for obtaining design wind loads on roof-mounted solar arrays publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)ST.1943-541X.0000654 – volume: 144 start-page: 106324 year: 2019 ident: 10.1016/j.tws.2020.106680_bib16 article-title: Experimental investigation on wind uplift capacity of single span Z-purlins supporting standing seam roof systems publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2019.106324 – volume: 128 start-page: 22 year: 2014 ident: 10.1016/j.tws.2020.106680_bib22 article-title: Large-scale testing on wind uplift of roof pavers publication-title: J. Wind Eng. Ind. Aerod. doi: 10.1016/j.jweia.2014.03.001 – volume: 117 start-page: 10 year: 2016 ident: 10.1016/j.tws.2020.106680_bib11 article-title: Inelastic response of steel roof deck diaphragms with nailed and welded connections publication-title: Thin-Walled Struct. – volume: 136 start-page: 334 year: 2010 ident: 10.1016/j.tws.2020.106680_bib23 article-title: Analysis of wind-induced clip loads on standing seam metal roofs publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)ST.1943-541X.118 – volume: 97 start-page: 140 year: 2009 ident: 10.1016/j.tws.2020.106680_bib2 article-title: Wind uplift strength of trapezoidal steel cladding with closely spaced ribs publication-title: J. Wind Eng. Ind. Aerod. doi: 10.1016/j.jweia.2009.03.002 – volume: 143 start-page: 1 year: 2017 ident: 10.1016/j.tws.2020.106680_bib6 article-title: Numerical modeling of thin-walled steel roof battens subjected to pull-through failures publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)ST.1943-541X.0001740 – year: 2010 ident: 10.1016/j.tws.2020.106680_bib27 – volume: 33 start-page: 3290 year: 2011 ident: 10.1016/j.tws.2020.106680_bib3 article-title: Response of pierced fixed corrugated steel roofing systems subjected to wind loads publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2011.08.020 – volume: 113 start-page: 388 year: 2016 ident: 10.1016/j.tws.2020.106680_bib7 article-title: Experimental studies of thin-walled steel roof battens subject to pull-through failures publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2015.12.016 – volume: 139 start-page: 135 year: 2017 ident: 10.1016/j.tws.2020.106680_bib4 article-title: Unified static-fatigue pull-through capacity equations for cold-formed steel roof battens publication-title: J. Constr. Steel Res. doi: 10.1016/j.jcsr.2017.09.027 – volume: 51 start-page: 215 year: 1994 ident: 10.1016/j.tws.2020.106680_bib18 article-title: Computer simulation of the fatigue behaviour of roof cladding during the passage of a tropical cyclone publication-title: J. Wind Eng. Ind. Aerod. doi: 10.1016/0167-6105(94)90005-1 |
SSID | ssj0017194 |
Score | 2.3331623 |
Snippet | The wind uplift performance of the continuously welded stainless steel roof (CWSSR) system adopted in the Zhaoqing New District Sports (ZNDS) Center of China... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106680 |
SubjectTerms | Continuous welding CWSSR system Dynamic wind loading Full-scale testing Mechanical behaviour Ultimate wind loading |
Title | Full-scale tests on the mechanical behaviour of a continuously welded stainless steel roof under wind excitation |
URI | https://dx.doi.org/10.1016/j.tws.2020.106680 |
Volume | 150 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaqcoHDahdY0V228oETUmgefiTHqmJVqOgBqOgtsuOxVJRNqzZV4cJvZyaP1SItHDgljsaS9WU0_saeB2NvhHLGxkYFwviYjm6KwGqJuhxmzrhQ-cjS0cCnpZqvxMe1XA_YrM-FobDKzva3Nr2x1t2XSYfmZLfZTL6g99BcYiEFCbM4XlMGu9Ck5e9-3Yd5RDpqmiGScEDS_c1mE-NVn6hid0xjpagy5GN704P95vacnXVEkU_btVywAVTP2bMH5QNfsB35j8EBUQaOjLE-8G3FkdDxO6B8XoKfd2n4xz3fem44RaZvqiO6--VPfoLSgeNNBlWJFg_fAEqOXNpzyi3b8xN67Bx-FF0h75dsdfv-62wedB0UgiLOdB04gfu_BxdbaiSeFVJpY5RCTKwGI60BbVKbCiHDBEQqwIWghTRF5jMvIpdcsmG1reAV45BImxZoAUKPLDDzqYmM9EksrXCFSWDEwh67vF8Vdbko8z6O7HuOcOcEd97CPWJv76fs2toa_xIW_Q_J_1CQHG3_36dd_d-0a_aURm1k42s2rPdHuEH2Udtxo15j9mT6YTFf0nPx-dviN5LW3QA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5dD2gGgLKm8feqoUbTaxneSIEGgpsJeCtLfIjsfSopBdLVkt_Htm8kBUKj30lodHsj5b4288L4AfUjtjI6MDaXzEVzdFYBNFeznMnHGh9iPLVwM3Ez2-k7-maroBZ30uDIdVdrq_1emNtu6-DDs0h4vZbPibrIfGiUUUJMyiaPoBNrk6lRrA5unl1Xjy6kxIRk0_RB4fsEDv3GzCvOo1F-2O-F1rLg75t-PpzZFzsQ1bHVcUp-10vsAGVl_h85sKgt9gwSZk8EhAoyDSWD-KeSWI04kH5JReXgHRZeKvlmLuhREcnD6rVmTxl89ijaVDJ5okqpKUHj0hloLotBecXrYUazLaBT4VXS3vHbi7OL89GwddE4WgiLKkDpwkCuDRRZZ7iWeF0okxWhMmNkGjrMHEpDaVUoUxylSiCzGRyhSZz7wcuXgXBtW8wu8gMFY2LUgJhJ6IYOZTMzLKx5Gy0hUmxj0Ie-zyflbc6KLM-1Cy-5zgzhnuvIV7D36-iiza8hr_Giz7Bcn_2CM5qf_3xfb_T-wEPo5vb67z68vJ1QF84j9toOMhDOrlCo-IjNT2uNtsLz8C3g4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Full-scale+tests+on+the+mechanical+behaviour+of+a+continuously+welded+stainless+steel+roof+under+wind+excitation&rft.jtitle=Thin-walled+structures&rft.au=Ou%2C+Tong&rft.au=Wang%2C+Dayang&rft.au=Xin%2C+Zhiyong&rft.au=Tan%2C+Jian&rft.date=2020-05-01&rft.pub=Elsevier+Ltd&rft.issn=0263-8231&rft.eissn=1879-3223&rft.volume=150&rft_id=info:doi/10.1016%2Fj.tws.2020.106680&rft.externalDocID=S026382311930922X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8231&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8231&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8231&client=summon |