Full-scale tests on the mechanical behaviour of a continuously welded stainless steel roof under wind excitation

The wind uplift performance of the continuously welded stainless steel roof (CWSSR) system adopted in the Zhaoqing New District Sports (ZNDS) Center of China is investigated in this study. To determine the optimal welding program and examine the mechanical properties of the continuously welded stain...

Full description

Saved in:
Bibliographic Details
Published inThin-walled structures Vol. 150; p. 106680
Main Authors Ou, Tong, Wang, Dayang, Xin, Zhiyong, Tan, Jian, Wu, Chengqing, Guo, Qiangwen, Zhang, Yongshan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The wind uplift performance of the continuously welded stainless steel roof (CWSSR) system adopted in the Zhaoqing New District Sports (ZNDS) Center of China is investigated in this study. To determine the optimal welding program and examine the mechanical properties of the continuously welded stainless steel joints, uniaxial tensile testing is first conducted on 27 specimens with tension-shear and tension-bending types. Two CWSSR specimens, one that is square-shaped with a horizontal layout and one that is rectangular-shaped with an inclination layout of 10.71°, are further tested under dynamic and static ultimate wind uplift loadings to explore the wind uplift capacity. All specimens are full-size, and the corresponding materials, structural details and construction technologies are kept the same as the actual building to ensure the authenticity of the testing investigations. The testing results indicate that the integrated and sealed CWSSR system has a clear force transmission mechanism and a remarkable wind resistance performance. The welded joints achieve the best performance, and the mechanical behaviours are equivalent to those of the base material under the continuously welded conditions including an electric current of 65 A and a moving velocity of 750 mm/s. An excellent dynamic wind suction performance is achieved under 5000 five-level cumulative loading cycles with a maximum pressure of 5400 Pa. The static ultimate pressure reaches 9400 Pa for the square specimen and 10,400 Pa for the rectangular specimen. Damage observations show that no tearing or rupture failures are observed for the CWSSR system. The investigation results contribute the most to the safe design of the ZNDS Center and are expected to provide guidelines for future applications of the CWSSR system. •Wind uplift performances of two full-scale CWSSR specimens are investigated under dynamic and static ultimate loadings.•Uniaxial tensile tests of 27 welded joints are conducted and an optimal welding program is sugested.•A high-efficiency roof of the CWSSR system is highlighted based on comparative discussions with traditional roof systems.•The roof sheets of the CWSSR system appear local plastic deformation without rupture failure under ultimate loading.
AbstractList The wind uplift performance of the continuously welded stainless steel roof (CWSSR) system adopted in the Zhaoqing New District Sports (ZNDS) Center of China is investigated in this study. To determine the optimal welding program and examine the mechanical properties of the continuously welded stainless steel joints, uniaxial tensile testing is first conducted on 27 specimens with tension-shear and tension-bending types. Two CWSSR specimens, one that is square-shaped with a horizontal layout and one that is rectangular-shaped with an inclination layout of 10.71°, are further tested under dynamic and static ultimate wind uplift loadings to explore the wind uplift capacity. All specimens are full-size, and the corresponding materials, structural details and construction technologies are kept the same as the actual building to ensure the authenticity of the testing investigations. The testing results indicate that the integrated and sealed CWSSR system has a clear force transmission mechanism and a remarkable wind resistance performance. The welded joints achieve the best performance, and the mechanical behaviours are equivalent to those of the base material under the continuously welded conditions including an electric current of 65 A and a moving velocity of 750 mm/s. An excellent dynamic wind suction performance is achieved under 5000 five-level cumulative loading cycles with a maximum pressure of 5400 Pa. The static ultimate pressure reaches 9400 Pa for the square specimen and 10,400 Pa for the rectangular specimen. Damage observations show that no tearing or rupture failures are observed for the CWSSR system. The investigation results contribute the most to the safe design of the ZNDS Center and are expected to provide guidelines for future applications of the CWSSR system. •Wind uplift performances of two full-scale CWSSR specimens are investigated under dynamic and static ultimate loadings.•Uniaxial tensile tests of 27 welded joints are conducted and an optimal welding program is sugested.•A high-efficiency roof of the CWSSR system is highlighted based on comparative discussions with traditional roof systems.•The roof sheets of the CWSSR system appear local plastic deformation without rupture failure under ultimate loading.
ArticleNumber 106680
Author Guo, Qiangwen
Wang, Dayang
Xin, Zhiyong
Wu, Chengqing
Zhang, Yongshan
Ou, Tong
Tan, Jian
Author_xml – sequence: 1
  givenname: Tong
  surname: Ou
  fullname: Ou, Tong
  organization: Architectural Design and Research Institute of Guangdong Province, 510000, PR China
– sequence: 2
  givenname: Dayang
  surname: Wang
  fullname: Wang, Dayang
  email: wadaya2015@gzhu.edu.cn
  organization: School of Civil Engineering, Guangzhou University, 510006, PR China
– sequence: 3
  givenname: Zhiyong
  surname: Xin
  fullname: Xin, Zhiyong
  organization: Zhuhai Envete Engineering Testing Co., LTD, 519000, PR China
– sequence: 4
  givenname: Jian
  surname: Tan
  fullname: Tan, Jian
  organization: Architectural Design and Research Institute of Guangdong Province, 510000, PR China
– sequence: 5
  givenname: Chengqing
  surname: Wu
  fullname: Wu, Chengqing
  organization: School of Civil Engineering, Guangzhou University, 510006, PR China
– sequence: 6
  givenname: Qiangwen
  surname: Guo
  fullname: Guo, Qiangwen
  organization: School of Civil Engineering, Guangzhou University, 510006, PR China
– sequence: 7
  givenname: Yongshan
  surname: Zhang
  fullname: Zhang, Yongshan
  organization: School of Civil Engineering, Guangzhou University, 510006, PR China
BookMark eNp9kMFOwzAMQCM0JMbgA7jlBzqSNE1bcUITA6RJXOAcpYmrZcqSKUk39vd0Glw47GRb9rPsd4smPnhA6IGSOSVUPG7m-ZDmjLBTLURDrtCUNnVblIyVEzQlTJRFw0p6g25T2hBCa9ryKdotB-eKpJUDnCHlhIPHeQ14C3qtvB0buIO12tswRBx6rLAOPls_hCG5Iz6AM2Bwysp6BymNGYDDMYyjgzcQ8cF6g-Fb26yyDf4OXffKJbj_jTP0tXz5XLwVq4_X98XzqtCsrXNheMNYD4Z1FRNtqytRKyXEeHRXg6o6BbVquobzipTAGw6GQM0rpdu-7Tk15QzV5706hpQi9PLvghyVdZISeRInN3IUJ0_i5FncSNJ_5C7arYrHi8zTmYHxpb2FKJO24DUYG0FnaYK9QP8AKJuLNQ
CitedBy_id crossref_primary_10_1016_j_jcsr_2024_108507
crossref_primary_10_1016_j_jobe_2024_108986
crossref_primary_10_1016_j_engstruct_2024_119179
crossref_primary_10_3390_buildings14010065
crossref_primary_10_1016_j_istruc_2023_01_125
crossref_primary_10_1016_j_engstruct_2021_112670
crossref_primary_10_3390_buildings13112855
crossref_primary_10_1002_tal_2121
crossref_primary_10_1007_s12205_021_0633_5
crossref_primary_10_1016_j_tws_2023_111458
crossref_primary_10_1002_tal_2013
crossref_primary_10_1016_j_jcsr_2025_109427
crossref_primary_10_1016_j_jcsr_2022_107575
crossref_primary_10_1016_j_jcsr_2024_109133
Cites_doi 10.1016/j.conbuildmat.2009.08.034
10.1016/j.conbuildmat.2016.06.092
10.1016/j.jmatprotec.2008.02.079
10.1016/j.engstruct.2016.05.055
10.1016/j.tws.2017.09.002
10.1016/j.tws.2017.08.019
10.1016/S0263-8231(03)00048-X
10.1016/j.strusafe.2014.07.001
10.1016/j.jobe.2016.10.009
10.1016/j.jweia.2013.01.002
10.1061/(ASCE)0733-9399(1995)121:9(956)
10.1016/j.engstruct.2015.10.006
10.1016/j.conbuildmat.2006.08.011
10.1061/(ASCE)ST.1943-541X.0000654
10.1016/j.tws.2019.106324
10.1016/j.jweia.2014.03.001
10.1061/(ASCE)ST.1943-541X.118
10.1016/j.jweia.2009.03.002
10.1061/(ASCE)ST.1943-541X.0001740
10.1016/j.engstruct.2011.08.020
10.1016/j.engstruct.2015.12.016
10.1016/j.jcsr.2017.09.027
10.1016/0167-6105(94)90005-1
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.tws.2020.106680
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3223
ExternalDocumentID 10_1016_j_tws_2020_106680
S026382311930922X
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
WH7
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c297t-d4822fed2b52699c567aa66719b7ea5bae7a8b844503e484ed0e745ac9f9f41d3
IEDL.DBID .~1
ISSN 0263-8231
IngestDate Tue Jul 01 03:58:58 EDT 2025
Thu Apr 24 22:59:06 EDT 2025
Fri Feb 23 02:47:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Full-scale testing
Ultimate wind loading
Continuous welding
CWSSR system
Dynamic wind loading
Mechanical behaviour
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-d4822fed2b52699c567aa66719b7ea5bae7a8b844503e484ed0e745ac9f9f41d3
ParticipantIDs crossref_citationtrail_10_1016_j_tws_2020_106680
crossref_primary_10_1016_j_tws_2020_106680
elsevier_sciencedirect_doi_10_1016_j_tws_2020_106680
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2020
2020-05-00
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationTitle Thin-walled structures
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References (bib13) 2010
Xu (bib19) 1995; 121
Henderson, Williams, Gavanski, Kopp (bib32) 2013; 114
Myuran, Mahendran (bib4) 2017; 139
Hassanein, Elchalakani, Elkawas (bib10) 2017; 120
Morrison, Kopp (bib23) 2010; 136
Jancauskas, Mahendran, Walker (bib18) 1994; 51
Sivapathasundaram, Mahendran (bib8) 2016; 124
Beck (bib5) 1975
Sivapathasundaram, Mahendran (bib6) 2017; 143
Henderson, Ginger (bib3) 2011; 33
Kot, Ali, Shaw, Riley, Alias (bib20) 2016; 30
Kim, Kim (bib25) 2009; 209
Mahaarachchi, Mahendran (bib2) 2009; 97
Kopp, Banks (bib21) 2013; 139
El Damatty, Rahman, Ragheb (bib30) 2003; 41
Friedrich, Luible (bib31) 2016; 8
(bib28) 2015
Zhang, Wang, Yan, Wang, Zhang (bib26) 2014
Luan, Li (bib16) 2019; 144
Motamedi, Ventura (bib11) 2016; 117
Hong, He (bib17) 2015; 52
Baskaran, Molleti, Sexton (bib24) 2008; 22
Silva, Lopes, Correia (bib1) 2010; 24
Sivapathasundaram, Mahendran (bib9) 2013; 122
Habte, Mooneghi, Chowdhury, Irwin (bib12) 2015; 105
Asghari Mooneghi, Irwin, Gan Chowdhury (bib22) 2014; 128
(bib27) 2010
Sivapathasundaram, Mahendran (bib7) 2016; 113
ASTM E1592-05 (bib29) 2017
Liu, Tong, Du (bib15) 2014; 35
FEMA (bib14) 2005
Sivapathasundaram (10.1016/j.tws.2020.106680_bib6) 2017; 143
Mahaarachchi (10.1016/j.tws.2020.106680_bib2) 2009; 97
Kopp (10.1016/j.tws.2020.106680_bib21) 2013; 139
(10.1016/j.tws.2020.106680_bib27) 2010
Liu (10.1016/j.tws.2020.106680_bib15) 2014; 35
Silva (10.1016/j.tws.2020.106680_bib1) 2010; 24
Hassanein (10.1016/j.tws.2020.106680_bib10) 2017; 120
Kot (10.1016/j.tws.2020.106680_bib20) 2016; 30
Habte (10.1016/j.tws.2020.106680_bib12) 2015; 105
El Damatty (10.1016/j.tws.2020.106680_bib30) 2003; 41
Myuran (10.1016/j.tws.2020.106680_bib4) 2017; 139
Zhang (10.1016/j.tws.2020.106680_bib26) 2014
FEMA (10.1016/j.tws.2020.106680_bib14) 2005
Sivapathasundaram (10.1016/j.tws.2020.106680_bib8) 2016; 124
ASTM E1592-05 (10.1016/j.tws.2020.106680_bib29) 2017
Jancauskas (10.1016/j.tws.2020.106680_bib18) 1994; 51
Sivapathasundaram (10.1016/j.tws.2020.106680_bib9) 2013; 122
(10.1016/j.tws.2020.106680_bib28) 2015
Beck (10.1016/j.tws.2020.106680_bib5) 1975
Luan (10.1016/j.tws.2020.106680_bib16) 2019; 144
Hong (10.1016/j.tws.2020.106680_bib17) 2015; 52
Baskaran (10.1016/j.tws.2020.106680_bib24) 2008; 22
Sivapathasundaram (10.1016/j.tws.2020.106680_bib7) 2016; 113
Motamedi (10.1016/j.tws.2020.106680_bib11) 2016; 117
Morrison (10.1016/j.tws.2020.106680_bib23) 2010; 136
(10.1016/j.tws.2020.106680_bib13) 2010
Henderson (10.1016/j.tws.2020.106680_bib32) 2013; 114
Henderson (10.1016/j.tws.2020.106680_bib3) 2011; 33
Xu (10.1016/j.tws.2020.106680_bib19) 1995; 121
Kim (10.1016/j.tws.2020.106680_bib25) 2009; 209
Asghari Mooneghi (10.1016/j.tws.2020.106680_bib22) 2014; 128
Friedrich (10.1016/j.tws.2020.106680_bib31) 2016; 8
References_xml – volume: 136
  start-page: 334
  year: 2010
  end-page: 337
  ident: bib23
  article-title: Analysis of wind-induced clip loads on standing seam metal roofs
  publication-title: J. Struct. Eng.
– volume: 105
  start-page: 231
  year: 2015
  end-page: 248
  ident: bib12
  article-title: Full-scale testing to evaluate the performance of standing seam metal roofs under simulated wind loading
  publication-title: Eng. Struct.
– volume: 120
  start-page: 249
  year: 2017
  end-page: 259
  ident: bib10
  article-title: Design of cold-formed CHS braces for steel roof structures
  publication-title: Thin-Walled Struct.
– volume: 117
  start-page: 10
  year: 2016
  end-page: 25
  ident: bib11
  article-title: Inelastic response of steel roof deck diaphragms with nailed and welded connections
  publication-title: Thin-Walled Struct.
– volume: 143
  start-page: 1
  year: 2017
  end-page: 17
  ident: bib6
  article-title: Numerical modeling of thin-walled steel roof battens subjected to pull-through failures
  publication-title: J. Struct. Eng.
– volume: 8
  start-page: 152
  year: 2016
  end-page: 161
  ident: bib31
  article-title: Measuring the wind suction capacity of plastics-based cladding using foil bag tests: a comparative study
  publication-title: J. Build. Engi.
– year: 2010
  ident: bib27
  article-title: Metallic Materials—Tensile Testing (Part 1: Method Of Test At Room Temperature
– volume: 22
  start-page: 343
  year: 2008
  end-page: 363
  ident: bib24
  article-title: Wind performance evaluation of fully bonded roofing assemblies
  publication-title: Construct. Build. Mater.
– volume: 122
  start-page: 439
  year: 2013
  end-page: 451
  ident: bib9
  article-title: New pull-out capacity equations for the design of screw fastener connections in steel cladding systems
  publication-title: Thin-Walled Struct.
– volume: 209
  start-page: 838
  year: 2009
  end-page: 846
  ident: bib25
  article-title: The effect of electromagnetic forces on the penetrator formation during high-frequency electric resistance welding
  publication-title: J. Mater. Process. Technol.
– volume: 30
  start-page: 435
  year: 2016
  end-page: 445
  ident: bib20
  article-title: The application of electromagnetic waves in monitoring water infiltration on concrete flat roof: the case of Malaysia
  publication-title: Construct. Build. Mater.
– volume: 97
  start-page: 140
  year: 2009
  end-page: 150
  ident: bib2
  article-title: Wind uplift strength of trapezoidal steel cladding with closely spaced ribs
  publication-title: J. Wind Eng. Ind. Aerod.
– start-page: 210
  year: 2014
  end-page: 214
  ident: bib26
  article-title: Effect of Heat input on the microstructure and mechanical properties of 445J2 ultra-pure ferritic stainless steel welding joints
  publication-title: J. Taiyuan Univ. Technol.
– volume: 41
  start-page: 1053
  year: 2003
  end-page: 1072
  ident: bib30
  article-title: Component testing and finite modeling of standing seam roofs
  publication-title: Thin-Walled Struct.
– year: 2015
  ident: bib28
  article-title: Standard Test Method for the Dynamic Wind Uplift Resistance of Membrane-Roofing Systems
– volume: 139
  start-page: 284
  year: 2013
  end-page: 287
  ident: bib21
  article-title: Use of the wind tunnel test method for obtaining design wind loads on roof-mounted solar arrays
  publication-title: J. Struct. Eng.
– volume: 33
  start-page: 3290
  year: 2011
  end-page: 3298
  ident: bib3
  article-title: Response of pierced fixed corrugated steel roofing systems subjected to wind loads
  publication-title: Eng. Struct.
– volume: 52
  start-page: 54
  year: 2015
  end-page: 65
  ident: bib17
  article-title: Effect of human error on the reliability of roof panel under uplift wind pressure
  publication-title: Struct. Saf.
– volume: 51
  start-page: 215
  year: 1994
  end-page: 227
  ident: bib18
  article-title: Computer simulation of the fatigue behaviour of roof cladding during the passage of a tropical cyclone
  publication-title: J. Wind Eng. Ind. Aerod.
– volume: 113
  start-page: 388
  year: 2016
  end-page: 406
  ident: bib7
  article-title: Experimental studies of thin-walled steel roof battens subject to pull-through failures
  publication-title: Eng. Struct.
– volume: 139
  start-page: 135
  year: 2017
  end-page: 148
  ident: bib4
  article-title: Unified static-fatigue pull-through capacity equations for cold-formed steel roof battens
  publication-title: J. Constr. Steel Res.
– volume: 128
  start-page: 22
  year: 2014
  end-page: 36
  ident: bib22
  article-title: Large-scale testing on wind uplift of roof pavers
  publication-title: J. Wind Eng. Ind. Aerod.
– year: 1975
  ident: bib5
  article-title: Appraisal of Roof Cladding under Dynamic Wind Loading-Cyclone Tracy Darwin
– year: 2005
  ident: bib14
  article-title: Mitigation Assessment Team Report: Hurricane Charley in Florida
– volume: 144
  start-page: 106324
  year: 2019
  ident: bib16
  article-title: Experimental investigation on wind uplift capacity of single span Z-purlins supporting standing seam roof systems
  publication-title: Thin-Walled Struct.
– volume: 35
  start-page: 116
  year: 2014
  end-page: 124
  ident: bib15
  article-title: Test and finite element analysis on torsional restrain of corrugated steel sheet to purlin through clips
  publication-title: J. Build. Struct.
– volume: 124
  start-page: 64
  year: 2016
  end-page: 84
  ident: bib8
  article-title: Development of fragility curves for localised pull-through failures of thin steel roof battens
  publication-title: Eng. Struct.
– volume: 114
  start-page: 27
  year: 2013
  end-page: 37
  ident: bib32
  article-title: Failure mechanisms of roof sheathing under fluctuating wind loads
  publication-title: J. Wind Eng. Ind. Aerod.
– year: 2010
  ident: bib13
  article-title: Minimum Design Loads for Building and Other Structures
– volume: 24
  start-page: 105
  year: 2010
  end-page: 112
  ident: bib1
  article-title: The effect of wind suction on flat roofs: an experimental and analytical study of mechanically fastened waterproofing systems
  publication-title: Construct. Build. Mater.
– volume: 121
  start-page: 956
  year: 1995
  end-page: 963
  ident: bib19
  article-title: Determination of wind-induced fatigue loading on roof cladding
  publication-title: J. Eng. Mech.
– year: 2017
  ident: bib29
  article-title: Standard Test Method for Structural Performance of Sheet Metal Roof and Siding Systems by Uniform Static Air Pressure Difference
– volume: 24
  start-page: 105
  year: 2010
  ident: 10.1016/j.tws.2020.106680_bib1
  article-title: The effect of wind suction on flat roofs: an experimental and analytical study of mechanically fastened waterproofing systems
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2009.08.034
– year: 2010
  ident: 10.1016/j.tws.2020.106680_bib13
– volume: 30
  start-page: 435
  year: 2016
  ident: 10.1016/j.tws.2020.106680_bib20
  article-title: The application of electromagnetic waves in monitoring water infiltration on concrete flat roof: the case of Malaysia
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.06.092
– volume: 209
  start-page: 838
  year: 2009
  ident: 10.1016/j.tws.2020.106680_bib25
  article-title: The effect of electromagnetic forces on the penetrator formation during high-frequency electric resistance welding
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2008.02.079
– volume: 124
  start-page: 64
  year: 2016
  ident: 10.1016/j.tws.2020.106680_bib8
  article-title: Development of fragility curves for localised pull-through failures of thin steel roof battens
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2016.05.055
– year: 1975
  ident: 10.1016/j.tws.2020.106680_bib5
– volume: 120
  start-page: 249
  year: 2017
  ident: 10.1016/j.tws.2020.106680_bib10
  article-title: Design of cold-formed CHS braces for steel roof structures
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2017.09.002
– year: 2017
  ident: 10.1016/j.tws.2020.106680_bib29
– start-page: 210
  year: 2014
  ident: 10.1016/j.tws.2020.106680_bib26
  article-title: Effect of Heat input on the microstructure and mechanical properties of 445J2 ultra-pure ferritic stainless steel welding joints
  publication-title: J. Taiyuan Univ. Technol.
– year: 2005
  ident: 10.1016/j.tws.2020.106680_bib14
– volume: 122
  start-page: 439
  year: 2013
  ident: 10.1016/j.tws.2020.106680_bib9
  article-title: New pull-out capacity equations for the design of screw fastener connections in steel cladding systems
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2017.08.019
– volume: 41
  start-page: 1053
  year: 2003
  ident: 10.1016/j.tws.2020.106680_bib30
  article-title: Component testing and finite modeling of standing seam roofs
  publication-title: Thin-Walled Struct.
  doi: 10.1016/S0263-8231(03)00048-X
– volume: 52
  start-page: 54
  year: 2015
  ident: 10.1016/j.tws.2020.106680_bib17
  article-title: Effect of human error on the reliability of roof panel under uplift wind pressure
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2014.07.001
– year: 2015
  ident: 10.1016/j.tws.2020.106680_bib28
– volume: 8
  start-page: 152
  year: 2016
  ident: 10.1016/j.tws.2020.106680_bib31
  article-title: Measuring the wind suction capacity of plastics-based cladding using foil bag tests: a comparative study
  publication-title: J. Build. Engi.
  doi: 10.1016/j.jobe.2016.10.009
– volume: 114
  start-page: 27
  year: 2013
  ident: 10.1016/j.tws.2020.106680_bib32
  article-title: Failure mechanisms of roof sheathing under fluctuating wind loads
  publication-title: J. Wind Eng. Ind. Aerod.
  doi: 10.1016/j.jweia.2013.01.002
– volume: 121
  start-page: 956
  year: 1995
  ident: 10.1016/j.tws.2020.106680_bib19
  article-title: Determination of wind-induced fatigue loading on roof cladding
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(1995)121:9(956)
– volume: 105
  start-page: 231
  year: 2015
  ident: 10.1016/j.tws.2020.106680_bib12
  article-title: Full-scale testing to evaluate the performance of standing seam metal roofs under simulated wind loading
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2015.10.006
– volume: 22
  start-page: 343
  year: 2008
  ident: 10.1016/j.tws.2020.106680_bib24
  article-title: Wind performance evaluation of fully bonded roofing assemblies
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2006.08.011
– volume: 35
  start-page: 116
  year: 2014
  ident: 10.1016/j.tws.2020.106680_bib15
  article-title: Test and finite element analysis on torsional restrain of corrugated steel sheet to purlin through clips
  publication-title: J. Build. Struct.
– volume: 139
  start-page: 284
  year: 2013
  ident: 10.1016/j.tws.2020.106680_bib21
  article-title: Use of the wind tunnel test method for obtaining design wind loads on roof-mounted solar arrays
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)ST.1943-541X.0000654
– volume: 144
  start-page: 106324
  year: 2019
  ident: 10.1016/j.tws.2020.106680_bib16
  article-title: Experimental investigation on wind uplift capacity of single span Z-purlins supporting standing seam roof systems
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2019.106324
– volume: 128
  start-page: 22
  year: 2014
  ident: 10.1016/j.tws.2020.106680_bib22
  article-title: Large-scale testing on wind uplift of roof pavers
  publication-title: J. Wind Eng. Ind. Aerod.
  doi: 10.1016/j.jweia.2014.03.001
– volume: 117
  start-page: 10
  year: 2016
  ident: 10.1016/j.tws.2020.106680_bib11
  article-title: Inelastic response of steel roof deck diaphragms with nailed and welded connections
  publication-title: Thin-Walled Struct.
– volume: 136
  start-page: 334
  year: 2010
  ident: 10.1016/j.tws.2020.106680_bib23
  article-title: Analysis of wind-induced clip loads on standing seam metal roofs
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)ST.1943-541X.118
– volume: 97
  start-page: 140
  year: 2009
  ident: 10.1016/j.tws.2020.106680_bib2
  article-title: Wind uplift strength of trapezoidal steel cladding with closely spaced ribs
  publication-title: J. Wind Eng. Ind. Aerod.
  doi: 10.1016/j.jweia.2009.03.002
– volume: 143
  start-page: 1
  year: 2017
  ident: 10.1016/j.tws.2020.106680_bib6
  article-title: Numerical modeling of thin-walled steel roof battens subjected to pull-through failures
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)ST.1943-541X.0001740
– year: 2010
  ident: 10.1016/j.tws.2020.106680_bib27
– volume: 33
  start-page: 3290
  year: 2011
  ident: 10.1016/j.tws.2020.106680_bib3
  article-title: Response of pierced fixed corrugated steel roofing systems subjected to wind loads
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2011.08.020
– volume: 113
  start-page: 388
  year: 2016
  ident: 10.1016/j.tws.2020.106680_bib7
  article-title: Experimental studies of thin-walled steel roof battens subject to pull-through failures
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2015.12.016
– volume: 139
  start-page: 135
  year: 2017
  ident: 10.1016/j.tws.2020.106680_bib4
  article-title: Unified static-fatigue pull-through capacity equations for cold-formed steel roof battens
  publication-title: J. Constr. Steel Res.
  doi: 10.1016/j.jcsr.2017.09.027
– volume: 51
  start-page: 215
  year: 1994
  ident: 10.1016/j.tws.2020.106680_bib18
  article-title: Computer simulation of the fatigue behaviour of roof cladding during the passage of a tropical cyclone
  publication-title: J. Wind Eng. Ind. Aerod.
  doi: 10.1016/0167-6105(94)90005-1
SSID ssj0017194
Score 2.3331623
Snippet The wind uplift performance of the continuously welded stainless steel roof (CWSSR) system adopted in the Zhaoqing New District Sports (ZNDS) Center of China...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106680
SubjectTerms Continuous welding
CWSSR system
Dynamic wind loading
Full-scale testing
Mechanical behaviour
Ultimate wind loading
Title Full-scale tests on the mechanical behaviour of a continuously welded stainless steel roof under wind excitation
URI https://dx.doi.org/10.1016/j.tws.2020.106680
Volume 150
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaqcoHDahdY0V228oETUmgefiTHqmJVqOgBqOgtsuOxVJRNqzZV4cJvZyaP1SItHDgljsaS9WU0_saeB2NvhHLGxkYFwviYjm6KwGqJuhxmzrhQ-cjS0cCnpZqvxMe1XA_YrM-FobDKzva3Nr2x1t2XSYfmZLfZTL6g99BcYiEFCbM4XlMGu9Ck5e9-3Yd5RDpqmiGScEDS_c1mE-NVn6hid0xjpagy5GN704P95vacnXVEkU_btVywAVTP2bMH5QNfsB35j8EBUQaOjLE-8G3FkdDxO6B8XoKfd2n4xz3fem44RaZvqiO6--VPfoLSgeNNBlWJFg_fAEqOXNpzyi3b8xN67Bx-FF0h75dsdfv-62wedB0UgiLOdB04gfu_BxdbaiSeFVJpY5RCTKwGI60BbVKbCiHDBEQqwIWghTRF5jMvIpdcsmG1reAV45BImxZoAUKPLDDzqYmM9EksrXCFSWDEwh67vF8Vdbko8z6O7HuOcOcEd97CPWJv76fs2toa_xIW_Q_J_1CQHG3_36dd_d-0a_aURm1k42s2rPdHuEH2Udtxo15j9mT6YTFf0nPx-dviN5LW3QA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5dD2gGgLKm8feqoUbTaxneSIEGgpsJeCtLfIjsfSopBdLVkt_Htm8kBUKj30lodHsj5b4288L4AfUjtjI6MDaXzEVzdFYBNFeznMnHGh9iPLVwM3Ez2-k7-maroBZ30uDIdVdrq_1emNtu6-DDs0h4vZbPibrIfGiUUUJMyiaPoBNrk6lRrA5unl1Xjy6kxIRk0_RB4fsEDv3GzCvOo1F-2O-F1rLg75t-PpzZFzsQ1bHVcUp-10vsAGVl_h85sKgt9gwSZk8EhAoyDSWD-KeSWI04kH5JReXgHRZeKvlmLuhREcnD6rVmTxl89ijaVDJ5okqpKUHj0hloLotBecXrYUazLaBT4VXS3vHbi7OL89GwddE4WgiLKkDpwkCuDRRZZ7iWeF0okxWhMmNkGjrMHEpDaVUoUxylSiCzGRyhSZz7wcuXgXBtW8wu8gMFY2LUgJhJ6IYOZTMzLKx5Gy0hUmxj0Ie-zyflbc6KLM-1Cy-5zgzhnuvIV7D36-iiza8hr_Giz7Bcn_2CM5qf_3xfb_T-wEPo5vb67z68vJ1QF84j9toOMhDOrlCo-IjNT2uNtsLz8C3g4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Full-scale+tests+on+the+mechanical+behaviour+of+a+continuously+welded+stainless+steel+roof+under+wind+excitation&rft.jtitle=Thin-walled+structures&rft.au=Ou%2C+Tong&rft.au=Wang%2C+Dayang&rft.au=Xin%2C+Zhiyong&rft.au=Tan%2C+Jian&rft.date=2020-05-01&rft.pub=Elsevier+Ltd&rft.issn=0263-8231&rft.eissn=1879-3223&rft.volume=150&rft_id=info:doi/10.1016%2Fj.tws.2020.106680&rft.externalDocID=S026382311930922X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8231&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8231&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8231&client=summon