Full-scale tests on the mechanical behaviour of a continuously welded stainless steel roof under wind excitation
The wind uplift performance of the continuously welded stainless steel roof (CWSSR) system adopted in the Zhaoqing New District Sports (ZNDS) Center of China is investigated in this study. To determine the optimal welding program and examine the mechanical properties of the continuously welded stain...
Saved in:
Published in | Thin-walled structures Vol. 150; p. 106680 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The wind uplift performance of the continuously welded stainless steel roof (CWSSR) system adopted in the Zhaoqing New District Sports (ZNDS) Center of China is investigated in this study. To determine the optimal welding program and examine the mechanical properties of the continuously welded stainless steel joints, uniaxial tensile testing is first conducted on 27 specimens with tension-shear and tension-bending types. Two CWSSR specimens, one that is square-shaped with a horizontal layout and one that is rectangular-shaped with an inclination layout of 10.71°, are further tested under dynamic and static ultimate wind uplift loadings to explore the wind uplift capacity. All specimens are full-size, and the corresponding materials, structural details and construction technologies are kept the same as the actual building to ensure the authenticity of the testing investigations. The testing results indicate that the integrated and sealed CWSSR system has a clear force transmission mechanism and a remarkable wind resistance performance. The welded joints achieve the best performance, and the mechanical behaviours are equivalent to those of the base material under the continuously welded conditions including an electric current of 65 A and a moving velocity of 750 mm/s. An excellent dynamic wind suction performance is achieved under 5000 five-level cumulative loading cycles with a maximum pressure of 5400 Pa. The static ultimate pressure reaches 9400 Pa for the square specimen and 10,400 Pa for the rectangular specimen. Damage observations show that no tearing or rupture failures are observed for the CWSSR system. The investigation results contribute the most to the safe design of the ZNDS Center and are expected to provide guidelines for future applications of the CWSSR system.
•Wind uplift performances of two full-scale CWSSR specimens are investigated under dynamic and static ultimate loadings.•Uniaxial tensile tests of 27 welded joints are conducted and an optimal welding program is sugested.•A high-efficiency roof of the CWSSR system is highlighted based on comparative discussions with traditional roof systems.•The roof sheets of the CWSSR system appear local plastic deformation without rupture failure under ultimate loading. |
---|---|
ISSN: | 0263-8231 1879-3223 |
DOI: | 10.1016/j.tws.2020.106680 |