Liver dysplasia: US molecular imaging with targeted contrast agent enables early assessment

To investigate the ability of vascular endothelial growth factor receptor type 2 (VEGFR2)-targeted ultrasonographic (US) microbubbles for the assessment of liver dysplasia in transgenic mice. Animal experiments were approved by the governmental review committee. Nuclear factor-κB essential modulator...

Full description

Saved in:
Bibliographic Details
Published inRadiology Vol. 267; no. 2; pp. 487 - 495
Main Authors Grouls, Christoph, Hatting, Maximillian, Rix, Anne, Pochon, Sibylle, Lederle, Wiltrud, Tardy, Isabelle, Kuhl, Christiane K, Trautwein, Christian, Kiessling, Fabian, Palmowski, Moritz
Format Journal Article
LanguageEnglish
Published United States 01.05.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To investigate the ability of vascular endothelial growth factor receptor type 2 (VEGFR2)-targeted ultrasonographic (US) microbubbles for the assessment of liver dysplasia in transgenic mice. Animal experiments were approved by the governmental review committee. Nuclear factor-κB essential modulator knock-out mice with liver dysplasia and wild-type mice underwent liver imaging by using a clinical US system. Two types of contrast agents were investigated: nontargeted, commercially available, second-generation microbubbles (SonoVue) and clinically translatable PEGylated VEGFR2-targeted microbubbles (BR55). Microbubble kinetics was investigated over the course of 4 minutes. Targeted contrast material-enhanced US signal was quantified 5 minutes after injection. Competitive in vivo binding experiments with BR55 were performed in knock-out mice. Immunohistochemical and hematoxylin-eosin staining of liver sections was performed to validate the in vivo US results. Groups were compared by using the Mann-Whitney test. Peak enhancement after injection of SonoVue and BR55 did not differ in healthy and dysplastic livers (SonoVue, P = .46; BR55, P = .43). Accordingly, immunohistochemical findings revealed comparable vessel densities in both groups. The specificity of BR55 to VEGFR2 was proved by in vivo competition (P = .0262). While the SonoVue signal decreased similarly in healthy and dysplastic livers during the 4 minutes, there was an accumulation of BR55 in dysplastic livers compared with healthy ones. Furthermore, targeted contrast-enhanced US signal indicated a significantly higher site-specific binding of BR55 in dysplastic than healthy livers (P = .005). Quantitative immunohistologic findings confirmed significantly higher VEGFR2 levels in dysplastic livers (P = .02). BR55 enables the distinction of early stages of liver dysplasia from normal liver.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0033-8419
1527-1315
DOI:10.1148/radiol.13120220