NASA's MODIS and VIIRS Land Surface Temperature and Emissivity Products: A Long-Term and Consistent Earth System Data Record
Land surface temperature and emissivity (LST&E) determine the total amount of upward long-wave infrared radiation emitted from the Earth's surface, making them key variables in a wide range of studies, including climate variability, land cover/use change, and the energy balance between the...
Saved in:
Published in | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 11; no. 2; pp. 522 - 535 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Land surface temperature and emissivity (LST&E) determine the total amount of upward long-wave infrared radiation emitted from the Earth's surface, making them key variables in a wide range of studies, including climate variability, land cover/use change, and the energy balance between the land and the atmosphere. LST&E products are currently produced on a routine basis using data from the MODIS instruments on the NASA EOS platforms and by the VIIRS instrument on the Suomi-NPP platform that serves as a bridge between NASA EOS and the next-generation JPSS platforms. Two new NASA LST&E products for MODIS (MxD21) and VIIRS (VNP21) will be produced during 2017 using a new approach that addresses discrepancies in accuracy and consistency between the current suite of MODIS and VIIRS LST split-window-based products. The new approach uses a temperature emissivity separation (TES) algorithm, originally developed for the ASTER instrument, to physically retrieve both LST and spectral emissivity consistently for both sensors with high accuracy and well-defined uncertainties. This study demonstrates continuity between the new MYD21 and VNP21 LST products at the <;±0.5 K level, with differences that are invariant to environmental conditions and land cover type. Furthermore, MYD21 and VNP21 retrieved emissivities matched closely in magnitude and temporal variation to within 1%-2% over two land validation sites consisting of quartz sands and grassland. Continuity between the new suite of MODIS and VIIRS LST&E products will ensure a consistent and well-characterized long-term LST&E data record for better monitoring and understanding trends in Earth system behavior. |
---|---|
ISSN: | 1939-1404 2151-1535 |
DOI: | 10.1109/JSTARS.2017.2779330 |