Generalised Jeffery's equations for rapidly spinning particles. Part 1. Spheroids

The observed behaviour of passive objects in simple flows can be surprisingly intricate, and is complicated further by object activity. Inspired by the motility of bacterial swimmers, in this two-part study we examine the three-dimensional motion of rigid active particles in shear Stokes flow, focus...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 979
Main Authors Dalwadi, M.P., Moreau, C., Gaffney, E.A., Ishimoto, K., Walker, B.J.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 25.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The observed behaviour of passive objects in simple flows can be surprisingly intricate, and is complicated further by object activity. Inspired by the motility of bacterial swimmers, in this two-part study we examine the three-dimensional motion of rigid active particles in shear Stokes flow, focusing on bodies that induce rapid rotation as part of their activity. In Part 1 we develop a multiscale framework to investigate these emergent dynamics and apply it to simple spheroidal objects. In Part 2 (Dalwadi et al., J. Fluid Mech., vol. 979, 2024, A2) we apply our framework to understand the emergent dynamics of more complex shapes; helicoidal objects with chirality. Via a multiple scales asymptotic analysis for nonlinear systems, we systematically derive emergent equations of motion for long-term trajectories that explicitly account for the strong (leading-order) effects of fast spinning. Supported by numerical examples, we constructively link these effective dynamics to the well-known Jeffery's orbits for passive spheroids, deriving an explicit closed-form expression for the effective shape of the active particle, broadening the scope of Jeffery's seminal study to spinning spheroids.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2023.923