Optical measurement in a curved optical medium with optical birefringence and anisotropic absorption
The planar optical mediums with properties of either birefringence (i.e., waveplates) or anisotropic absorption (i.e., polarizers) are well studied. However, how a beam propagates in a birefringent curved medium with anisotropic absorption, especially for curved-sheet polarizers, still needs to be i...
Saved in:
Published in | Optics express Vol. 29; no. 23; pp. 38654 - 38668 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
08.11.2021
|
Online Access | Get full text |
Cover
Loading…
Summary: | The planar optical mediums with properties of either birefringence (i.e., waveplates) or anisotropic absorption (i.e., polarizers) are well studied. However, how a beam propagates in a birefringent curved medium with anisotropic absorption, especially for curved-sheet polarizers, still needs to be investigated. In this paper, we study optical wave propagation through a curved-birefringent medium with anisotropic absorption. We built an optical model based on the Mueller matrix to predict the spatial distributions in light intensity and polarization when light propagates in a curved-birefringent medium with anisotropic absorption. To demonstrate how to use the optical model, the experiments based on ellipsometry are also performed. The impact of this study is to analyze the light propagation in birefringent-curved medium with anisotropic absorption, which could affect the performance of curved liquid crystal devices with curved polarizers, such as curved liquid crystal displays (LCDs), flexible LCDs, and flexible LC lenses. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.439521 |