Minimalistic fully convolution networks (MFCN): pixel-level classification for hyperspectral image with few labeled samples

Most of the existing deep learning methods for hyperspectral image (HSI) classification use pixel-wise or patch-wise classification. In this paper, we propose an image-wise classification method, where the network input is the original hyperspectral cube rather than the spectral curve of each pixel...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 30; no. 10; pp. 16585 - 16605
Main Authors Xu, Buyun, Hou, Weijun, Wei, Yiwei, Wang, Yiting, Li, Xihai
Format Journal Article
LanguageEnglish
Published 09.05.2022
Online AccessGet full text

Cover

Loading…
More Information
Summary:Most of the existing deep learning methods for hyperspectral image (HSI) classification use pixel-wise or patch-wise classification. In this paper, we propose an image-wise classification method, where the network input is the original hyperspectral cube rather than the spectral curve of each pixel (i.e., pixel-wise) or neighbor region of each pixel (i.e., patch-wise). Specifically, we propose a minimalistic fully convolution network (MFCN) and a semi-supervised loss function, which can perform pixel-level classification for HSI with few labeled samples. The comparison experiments demonstrated the progress of our methods, using three new benchmark HSI datasets (WHU-Hi-LongKou, WHU-Hi-HanChuan and WHU-Hi-HongHu) with wavelength range from 400 to 1000nm. In the comparison experiments, we randomly selected 25 labeled pixels from each class for training, equivalent to only 0.11%, 0.16%, and 0.14% of all labeled pixels for the three datasets, respectively. In addition, through ablation studies and theoretical analysis, we verified and analyzed the effectiveness and superiority of our design choices.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.453274