DeepUNet: A Deep Fully Convolutional Network for Pixel-Level Sea-Land Segmentation

Semantic segmentation is a fundamental research in optical remote sensing image processing. Because of the complex maritime environment, the sea-land segmentation is a challenging task. Although the neural network has achieved excellent performance in semantic segmentation in the last years, there w...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in applied earth observations and remote sensing Vol. 11; no. 11; pp. 3954 - 3962
Main Authors Li, Ruirui, Liu, Wenjie, Yang, Lei, Sun, Shihao, Hu, Wei, Zhang, Fan, Li, Wei
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.11.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1939-1404
2151-1535
DOI10.1109/JSTARS.2018.2833382

Cover

Loading…
More Information
Summary:Semantic segmentation is a fundamental research in optical remote sensing image processing. Because of the complex maritime environment, the sea-land segmentation is a challenging task. Although the neural network has achieved excellent performance in semantic segmentation in the last years, there were a few of works using CNN for sea-land segmentation and the results could be further improved. This paper proposes a novel deep convolution neural network named DeepUNet. Like the U-Net, its structure has a contracting path and an expansive path to get high-resolution optical output. But differently, the DeepUNet uses DownBlocks instead of convolution layers in the contracting path and uses UpBlock in the expansive path. The two novel blocks bring two new connections that are U-connection and Plus connection. They are promoted to get more precise segmentation results. To verify the network architecture, we construct a new challenging sea-land dataset and compare the DeepUNet on it with the U-Net, SegNet, and SeNet. Experimental results show that DeepUNet can improve 1-2% accuracy performance compared with other architectures, especially in high-resolution optical remote sensing imagery.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1939-1404
2151-1535
DOI:10.1109/JSTARS.2018.2833382