Effect of TiO2 on electron paramagnetic resonance, optical transmission and dc conductivity of vanadyl doped sodium borate glasses

Glass systems with composition xTiO2.(30 - x)Na2O.70B2O3 (series I) and xTiO2.(70 - x)B2O3.30Na2O (series II) containing 2 mol% V2O5 have been prepared (0 < or = x < or = 7, mol%) by normal melt-quenching. The electron paramagnetic resonance (EPR) spectra of VO2+ ions have been recorded in the...

Full description

Saved in:
Bibliographic Details
Published inSpectrochimica acta. Part A, Molecular and biomolecular spectroscopy Vol. 60; no. 13; pp. 3161 - 3167
Main Authors Agarwal, A, Seth, V P, Gahlot, P, Goyal, D R, Arora, M, Gupta, S K
Format Journal Article
LanguageEnglish
Published England 01.11.2004
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Glass systems with composition xTiO2.(30 - x)Na2O.70B2O3 (series I) and xTiO2.(70 - x)B2O3.30Na2O (series II) containing 2 mol% V2O5 have been prepared (0 < or = x < or = 7, mol%) by normal melt-quenching. The electron paramagnetic resonance (EPR) spectra of VO2+ ions have been recorded in the X-band (approximately 9.13 GHz) at room temperature. Spin Hamiltonian parameters, gparallel, gperpendicular, Aparallel, Aperpendicular, the dipolar hyperfine coupling parameter (P) and the Fermi contact interaction parameter (K) have been calculated. The increase in Deltagparallel/Deltagperpendicular with increase in TiO2 content in series I shows that the octahedral symmetry of V4+O6 complex is reduced, whereas in series II the octahedral symmetry is improved with increase in x. The decrease in P, in both the series, indicates that the 3dxy orbit expands with increase in mol% of TiO2. The molecular orbital coefficients, alpha2 and gamma2 have been calculated by recording the optical transmission spectra in the range 500-850 nm. alpha2 and gamma2 increase with increase in x in both the series, which indicates that, the covalency of the vanadium oxygen bonds decreases. The dc conductivity sigma, decreases and activation energy, W increases with increase in TiO2:Na2O ratio whereas with increase in TiO2:B2O3 ratio the variation in sigma and W is within experimental error.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1386-1425
DOI:10.1016/j.saa.2004.02.031