Enhanced photocatalytic degradation of organic dyes from aqueous environment using neodymium-doped mesoporous layered double hydroxide
Neodymium-doped Zn–Al layered double hydroxide (Nd/Zn-Al LDH) with excellent photocatalytic activity was prepared by a one-step hydrothermal method. The morphology and physicochemical properties of as-synthesized photocatalysts were well analyzed by Fourier transform infrared (FT-IR), X-ray diffract...
Saved in:
Published in | Journal of rare earths Vol. 40; no. 10; pp. 1554 - 1563 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Neodymium-doped Zn–Al layered double hydroxide (Nd/Zn-Al LDH) with excellent photocatalytic activity was prepared by a one-step hydrothermal method. The morphology and physicochemical properties of as-synthesized photocatalysts were well analyzed by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), photoluminescence (PL), UV-diffuse reflectance spectroscopy (UV-DRS), and Brunauer-Emmett-Teller (BET) surface analysis. Doping Nd3+ into Zn–Al LDH enhances the overall catalytic activity of the nanocomposite, like better electron–hole pair separation, increase in interplanar distance, fast electron transfer, and large surface area. The as-prepared nanocomposite shows excellent degradation of three different dyes under visible light irradiation. The degradation efficiency of these dyes follows the order of Congo red > rose Bengal > fast green. Furthermore, liquid chromatography-mass spectrometry (LC-MS) was employed to propose a possible photocatalytic degradation pathway for Congo Red and Rose Bengal dyes by Nd/Zn–Al LDH. With the help of radical trapping experiments, it is revealed that during the photoexcitation process, the primary reactive intermediates are hydroxyl radicals.
[Display omitted] |
---|---|
ISSN: | 1002-0721 2509-4963 |
DOI: | 10.1016/j.jre.2021.09.007 |