Optimal bright multimode quantum squeezing via multi-seeding energy-level cascaded four-wave mixing

Quantum Squeezing is one of the most important quantum resources in quantum optics and quantum information. In particular, multimode quantum squeezing, with ultra-low quantum fluctuations and quantum correlations amongst many optical modes, is essential for realizing multipartite entanglement and qu...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 30; no. 22; pp. 39762 - 39774
Main Authors Li, Jiawei, Zeng, Jianhua, Li, Feng, Zhang, Yanpeng, Cai, Yin
Format Journal Article
LanguageEnglish
Published 24.10.2022
Online AccessGet full text

Cover

Loading…
More Information
Summary:Quantum Squeezing is one of the most important quantum resources in quantum optics and quantum information. In particular, multimode quantum squeezing, with ultra-low quantum fluctuations and quantum correlations amongst many optical modes, is essential for realizing multipartite entanglement and quantum precision measurements. In this paper, we propose an all-optically controlled scheme to generate three-mode bright quantum correlated beams from energy-level cascaded four-wave mixing (ELC-FWM). By using a linear modes transform approach, the input-output relation and the covariance matrix of the produced states are obtained. Moreover, single-, double- and triple-seeding conditions are investigated to measure the quantum squeezing properties. We find that various permutations of two- and three-mode quadrature squeezing can be generated and optimized to reach the corresponding limit, via only modulating the ratio of the multiple seeds, without need of any post-operating linear optics, e.g., beam splitters. Such weak seeding light controlled scheme suggests the modulation and the optimization of multimode quantum states might be operated at photons-level, providing a reconfigurable and integrated strategy for complex quantum information processing and quantum metrology.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.463900