Maximal cocliques in the Kneser graph on point–plane flags in PG(4,q)
We determine the maximal cocliques of size ≥5q2+5q+2 in the Kneser graph on point–plane flags in PG(4,q). The maximal size of a coclique in this graph is (q2+q+1)(q3+q2+q+1).
Saved in:
Published in | European journal of combinatorics Vol. 35; pp. 95 - 104 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2014
|
Online Access | Get full text |
Cover
Loading…
Summary: | We determine the maximal cocliques of size ≥5q2+5q+2 in the Kneser graph on point–plane flags in PG(4,q). The maximal size of a coclique in this graph is (q2+q+1)(q3+q2+q+1). |
---|---|
ISSN: | 0195-6698 1095-9971 |
DOI: | 10.1016/j.ejc.2013.06.005 |