Factors Affecting Wetland Loss: A Review

Despite occupying an area no greater than 8% of the earth’s surface, natural wetland ecosystems fulfill multiple ecological functions: 1. Soil formation and stabilization support, 2. Food, water, and plant biomass supply, 3. Cultural/recreational services, landscape, and ecological tourism, 4. Clima...

Full description

Saved in:
Bibliographic Details
Published inLand (Basel) Vol. 11; no. 3; p. 434
Main Authors Ballut-Dajud, Gastón Antonio, Sandoval Herazo, Luis Carlos, Fernández-Lambert, Gregorio, Marín-Muñiz, José Luis, López Méndez, María Cristina, Betanzo-Torres, Erick Arturo
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Despite occupying an area no greater than 8% of the earth’s surface, natural wetland ecosystems fulfill multiple ecological functions: 1. Soil formation and stabilization support, 2. Food, water, and plant biomass supply, 3. Cultural/recreational services, landscape, and ecological tourism, 4. Climate regulation, and 5. Carbon sequestration; with the last one being its most important function. They are subject to direct and indirect incident factors that affect plant productivity and the sequestration of carbon from the soil. Thus, the objective of this review was to identify the incident factors in the loss of area and carbon sequestration in marine, coastal, and continental wetlands that have had an impact on climate change in the last 14 years, globally. The methodology consisted of conducting a literature review in international databases, analyzing a sample of 134 research studies from 37 countries, organized in tables and figures supported by descriptive statistics and content analysis. Global results indicate that agriculture (25%), urbanization (16.8%), aquaculture (10.7%), and industry (7.6%) are incident factors that promote wetlands effective loss affecting continental wetlands more than coastal and marine ones. Regarding carbon sequestration, this is reduced by vegetation loss since GHG emissions raise because the soil is exposed to sun rays, increasing surface temperature and oxidation, and raising organic matter decomposition and the eutrophication phenomenon caused by the previous incident factors that generate wastewater rich in nutrients in their different activities, thus creating biomass and plant growth imbalances, either at the foliage or root levels and altering the accumulation of organic matter and carbon. It is possible to affirm in conclusion that the most affected types of wetlands are: mangroves (25.7%), lagoons (19.11%), and marine waters (11.7%). Furthermore, it was identified that agriculture has a greater incidence in the loss of wetlands, followed by urbanization and industry in a lower percentage.
ISSN:2073-445X
2073-445X
DOI:10.3390/land11030434